In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in...In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.展开更多
Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulti...Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulting in high decoding complexity and latency.To alleviate this issue,we incorporate the LDPC-CRC-Polar coding scheme with BPBF and propose an improved belief propagation decoder for LDPC-CRC-Polar codes with bit-freezing(LDPCCRC-Polar codes BPBFz).The proposed LDPCCRC-Polar codes BPBFz employs the LDPC code to ensure the reliability of the flipping set,i.e.,critical set(CS),and dynamically update it.The modified CS is further utilized for the identification of error-prone bits.The proposed LDPC-CRC-Polar codes BPBFz obtains remarkable error correction performance and is comparable to that of the CA-SCL(L=16)decoder under medium-to-high signal-to-noise ratio(SNR)regions.It gains up to 1.2dB and 0.9dB at a fixed BLER=10-4compared with BP and BPBF(CS-1),respectively.In addition,the proposed LDPC-CRC-Polar codes BPBFz has lower decoding latency compared with CA-SCL and BPBF,i.e.,it is 15 times faster than CA-SCL(L=16)at high SNR regions.展开更多
In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of t...In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of the dominant trapping sets of the LDPC code.Accordingly,an algorithm for selecting the information bits of the short code is proposed,and a specific two-stage decoding algorithm is presented.Simulation results demonstrate that the proposed doped LDPC code achieves up to 2.0 dB gain compared with the original LDPC code at a frame error rate of 10^(-6)Furthermore,the proposed design can lower the error floor of original LDPC Codes.展开更多
This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Sp...This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Specifically,the scheme that effectively combines the ACO algorithm and the non-binary elements over finite fields is proposed.Furthermore,an improved,simplified elitist ACO algorithm based on soft decision reliability is introduced to recognize the parity-check matrix over noisy channels.Simulation results show that the recognition rate continuously increases with an increased signalto-noise ratio(SNR)over the AWGN channel.展开更多
In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete mem...In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete memoryless channels(BDMCs),the proposed decoders quantize the virtual subchannels of polar codes to maximize mutual information(MMI)between source bits and quantized symbols.The nested structure of polar codes ensures that the MMI quantization can be implemented stage by stage.Simulation results show that the proposed MMI decoders with 4 quantization bits outperform the existing nonuniform quantized decoders that minimize mean-squared error(MMSE)with 4 quantization bits,and yield even better performance than uniform MMI quantized decoders with 5 quantization bits.Furthermore,the proposed 5-bit quantized MMI decoders approach the floating-point decoders with negligible performance loss.展开更多
Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including O...Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.展开更多
Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum co...Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.展开更多
Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre...Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.展开更多
Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved s...Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.展开更多
Recently,linear codes with a few weights have been extensively studied due to their applications in secret sharing schemes,constant composition codes,strongly regular graphs and so on.In this paper,based on the Weil s...Recently,linear codes with a few weights have been extensively studied due to their applications in secret sharing schemes,constant composition codes,strongly regular graphs and so on.In this paper,based on the Weil sums,several classes of two-weight or three-weight linear codes are presented by choosing a proper defining set,and their weight enumerators and complete weight enumerators are determined.Furthermore,these codes are proven to be minimal.By puncturing these linear codes,two classes of two-weight projective codes are obtained,and the parameters of the corresponding strongly regular graph are given.This paper generalizes the results of[7].展开更多
Power line communication(PLC)has the potential to become the preferred technique for providing broadband communication to homes and offices with advantage of eliminating the need for new wiring infrastructure and redu...Power line communication(PLC)has the potential to become the preferred technique for providing broadband communication to homes and offices with advantage of eliminating the need for new wiring infrastructure and reducing the cost.But it suffers from the impulsive noise because it introduces significant time variance into the power line channel.In this paper,a polar codes based orthogonal frequency division multiplexing(OFDM)PLC system is proposed to deal with the impulsive noise and thereby improve the transmission performance.Firstly,the impulsive noise is modelled with a multi-damped sine function by analyzing the time behavior of impulse events.Then the polar codes are used to combat the impulsive noise of PLC channel,and a low complexity bit-flipping decoding method based on CRC-aided successive cancellation list(CA-SCL)decoding algorithm is proposed.Simulations evaluate the proposed decoding algorithm and the results validate the suggested polar codes based OFDM-PLC scheme which can improve the BER performance of PLC with impulsive interference.展开更多
After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the cod...After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the coding theory in the past two decades.In this survey,we retrospect the history of polar codes and summarize the advancement in the past ten years.First,the primary principle of channel polarization is investigated such that the basic construction,coding method and the classic successive cancellation(SC)decoding are reviewed.Second,in order to improve the performance of the finite code length,we introduce the guiding principle and conclude five design criteria for the construction,design and implementation of the polar code in the practical communication system based on the exemplar schemes in the literature.Especially,we explain the design principle behind the concatenated coding and rate matching of polar codes in 5G wireless system.Furthermore,the improved SC decoding algorithms,such as SC list(SCL)decoding and SC stack(SCS)decoding etc.,are investigated and compared.Finally,the research prospects of polar codes for the future 6G communication system are explored,including the optimization of short polar codes,coding construction in fading channels,polar coded modulation and HARQ,and the polar coded transmission,namely polar processing.Predictably,as a new coding methodology,polar codes will shine a light on communication theory and unveil a revolution in transmission technology.展开更多
Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginner...Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginners,opensource codes are undoubtedly the best alternative to learning TO,which can elaborate the implementation of a method in detail and easily engage more people to employ and extend the method.In this paper,we present a summary of various open-source codes and related literature on TO methods,including solid isotropic material with penalization(SIMP),evolutionary method,level set method(LSM),moving morphable components/voids(MMC/MMV)methods,multiscale topology optimization method,etc.Simultaneously,we classify the codes into five levels,fromeasy to difficult,depending on their difficulty,so that beginners can get started and understand the form of code implementation more quickly.展开更多
Low-density parity-check(LDPC)codes are not only capacity-approaching,but also greatly suitable for high-throughput implementation.Thus,they are the most popular codes for high-speed data transmission in the past two ...Low-density parity-check(LDPC)codes are not only capacity-approaching,but also greatly suitable for high-throughput implementation.Thus,they are the most popular codes for high-speed data transmission in the past two decades.Thanks to the low-density property of their parity-check matrices,the optimal maximum a posteriori probability decoding of LDPC codes can be approximated by message-passing decoding with linear complexity and highly parallel nature.Then,it reveals that the approximation has to carry on Tanner graphs without short cycles and small trapping sets.Last,it demonstrates that well-designed LDPC codes with the aid of computer simulation and asymptotic analysis tools are able to approach the channel capacity.Moreover,quasi-cyclic(QC)structure is introduced to significantly facilitate their high-throughput implementation.In fact,compared to the other capacity-approaching codes,QC-LDPC codes can provide better area-efficiency and energy-efficiency.As a result,they are widely applied in numerous communication systems,e.g.,Landsat satellites,Chang’e Chinese Lunar mission,5G mobile communications and so on.What’s more,its extension to non-binary Galois fields has been adopted as the channel coding scheme for BeiDou navigation satellite system.展开更多
Recently,a generalized successive cancellation list(SCL)decoder implemented with shiftedpruning(SP)scheme,namely the SCL-SP-ωdecoder,is presented for polar codes,which is able to shift the pruning window at mostωtim...Recently,a generalized successive cancellation list(SCL)decoder implemented with shiftedpruning(SP)scheme,namely the SCL-SP-ωdecoder,is presented for polar codes,which is able to shift the pruning window at mostωtimes during each SCL re-decoding attempt to prevent the correct path from being eliminated.The candidate positions for applying the SP scheme are selected by a shifting metric based on the probability that the elimination occurs.However,the number of exponential/logarithm operations involved in the SCL-SP-ωdecoder grows linearly with the number of information bits and list size,which leads to high computational complexity.In this paper,we present a detailed analysis of the SCL-SP-ωdecoder in terms of the decoding performance and complexity,which unveils that the choice of the shifting metric is essential for improving the decoding performance and reducing the re-decoding attempts simultaneously.Then,we introduce a simplified metric derived from the path metric(PM)domain,and a custom-tailored deep learning(DL)network is further designed to enhance the efficiency of the proposed simplified metric.The proposed metrics are both free of transcendental functions and hence,are more hardware-friendly than the existing metrics.Simulation results show that the proposed DL-aided metric provides the best error correction performance as comparison with the state of the art.展开更多
This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
Deep holes are very important in the decoding of generalized RS codes, and deep holes of RS codes have been widely studied, but there are few works on constructing general linear codes based on deep holes. Therefore, ...Deep holes are very important in the decoding of generalized RS codes, and deep holes of RS codes have been widely studied, but there are few works on constructing general linear codes based on deep holes. Therefore, we consider constructing binary linear codes by combining deep holes with binary BCH codes. In this article, we consider the 2-error-correcting binary primitive BCH codes and the extended codes to construct new binary linear codes by combining them with deep holes, respectively. Furthermore, three classes of binary linear codes are constructed, and then we determine the parameters and the weight distributions of these new binary linear codes.展开更多
To remove the restriction on code length of polar codes,this paper proposes a construction scheme,called stepwise polar codes,which can gen-erate arbitrary-length polar codes.The stepwise polar codes are generated by ...To remove the restriction on code length of polar codes,this paper proposes a construction scheme,called stepwise polar codes,which can gen-erate arbitrary-length polar codes.The stepwise polar codes are generated by sub-polar codes with different code lengths.To improve coding performance,sub-polar codes are united by polarization effect priority algorithm,which can reduce the number of in-completely polarized channels.Then,the construction method of the generator matrix of the stepwise po-lar code is presented.Furthermore,we prove that the proposed scheme has lower decoding complexity than punctured,multi-kernel polar codes.Simulation results show that the proposed method can achieve similar decoding performance compared with the conventional punctured polar codes,rate-compatible punctured polar code,PC-short and asymmetric polar codes(APC)when code length N=48 and 72,respectively.展开更多
This paper presents an intelligent protograph construction algorithm.Protograph LDPC codes have shown excellent error correction performance and play an important role in wireless communications.Random search or manua...This paper presents an intelligent protograph construction algorithm.Protograph LDPC codes have shown excellent error correction performance and play an important role in wireless communications.Random search or manual construction are often used to obtain a good protograph,but the efficiency is not high enough and many experience and skills are needed.In this paper,a fast searching algorithm is proposed using the convolution neural network to predict the iterative decoding thresholds of protograph LDPC codes effectively.A special input data transformation rule is applied to provide stronger generalization ability.The proposed algorithm converges faster than other algorithms.The iterative decoding threshold of the constructed protograph surpasses greedy algorithm and random search by about 0.53 dB and 0.93 dB respectively under 100 times of density evolution.Simulation results show that quasi-cyclic LDPC(QC-LDPC)codes constructed from the proposed algorithm have competitive performance compared to other papers.展开更多
基金supported by the National Natural Science Foundation of China(61601147)the Beijing Natural Science Foundation(L182032)。
文摘In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.
基金partially supported by the National Key Research and Development Project under Grant 2020YFB1806805。
文摘Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulting in high decoding complexity and latency.To alleviate this issue,we incorporate the LDPC-CRC-Polar coding scheme with BPBF and propose an improved belief propagation decoder for LDPC-CRC-Polar codes with bit-freezing(LDPCCRC-Polar codes BPBFz).The proposed LDPCCRC-Polar codes BPBFz employs the LDPC code to ensure the reliability of the flipping set,i.e.,critical set(CS),and dynamically update it.The modified CS is further utilized for the identification of error-prone bits.The proposed LDPC-CRC-Polar codes BPBFz obtains remarkable error correction performance and is comparable to that of the CA-SCL(L=16)decoder under medium-to-high signal-to-noise ratio(SNR)regions.It gains up to 1.2dB and 0.9dB at a fixed BLER=10-4compared with BP and BPBF(CS-1),respectively.In addition,the proposed LDPC-CRC-Polar codes BPBFz has lower decoding latency compared with CA-SCL and BPBF,i.e.,it is 15 times faster than CA-SCL(L=16)at high SNR regions.
基金supported in part by China NSF under Grants No.61771081 and 62072064the Fundamental Research Funds for the Central Universities(China)under Grant cstc2019jcyjmsxmX0110+2 种基金the Project of Chongqing Natural Science Foundation under Grant CSTB2022NSCQ-MSX0990Science and Technology Research Project of Chongqing Education Commission under Grant KJQN202000612the Venture and Innovation Support Program for Chongqing Overseas Returnees under Grant cx2020070.
文摘In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of the dominant trapping sets of the LDPC code.Accordingly,an algorithm for selecting the information bits of the short code is proposed,and a specific two-stage decoding algorithm is presented.Simulation results demonstrate that the proposed doped LDPC code achieves up to 2.0 dB gain compared with the original LDPC code at a frame error rate of 10^(-6)Furthermore,the proposed design can lower the error floor of original LDPC Codes.
文摘This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Specifically,the scheme that effectively combines the ACO algorithm and the non-binary elements over finite fields is proposed.Furthermore,an improved,simplified elitist ACO algorithm based on soft decision reliability is introduced to recognize the parity-check matrix over noisy channels.Simulation results show that the recognition rate continuously increases with an increased signalto-noise ratio(SNR)over the AWGN channel.
基金financially supported in part by National Key R&D Program of China(No.2018YFB1801402)in part by Huawei Technologies Co.,Ltd.
文摘In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete memoryless channels(BDMCs),the proposed decoders quantize the virtual subchannels of polar codes to maximize mutual information(MMI)between source bits and quantized symbols.The nested structure of polar codes ensures that the MMI quantization can be implemented stage by stage.Simulation results show that the proposed MMI decoders with 4 quantization bits outperform the existing nonuniform quantized decoders that minimize mean-squared error(MMSE)with 4 quantization bits,and yield even better performance than uniform MMI quantized decoders with 5 quantization bits.Furthermore,the proposed 5-bit quantized MMI decoders approach the floating-point decoders with negligible performance loss.
基金supported by the Excellent Foreign Student scholarship program,Sirindhorn International Institute of Technology.
文摘Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.
基金supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001)。
文摘Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.
基金Project supported by Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2021MF049,ZR2022LLZ012,and ZR2021LLZ001)。
文摘Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.
基金funded by the Key Project of NSFC-Guangdong Province Joint Program(Grant No.U2001204)the National Natural Science Foundation of China(Grant Nos.61873290 and 61972431)+1 种基金the Science and Technology Program of Guangzhou,China(Grant No.202002030470)the Funding Project of Featured Major of Guangzhou Xinhua University(2021TZ002).
文摘Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.
基金supported by the Natural Science Foundation of China (No.11901062)the Sichuan Natural Science Foundation (No.2024NSFSC0417)。
文摘Recently,linear codes with a few weights have been extensively studied due to their applications in secret sharing schemes,constant composition codes,strongly regular graphs and so on.In this paper,based on the Weil sums,several classes of two-weight or three-weight linear codes are presented by choosing a proper defining set,and their weight enumerators and complete weight enumerators are determined.Furthermore,these codes are proven to be minimal.By puncturing these linear codes,two classes of two-weight projective codes are obtained,and the parameters of the corresponding strongly regular graph are given.This paper generalizes the results of[7].
基金Supported by Headquarters Technology Project of State Grid Corporation of China(No.5700-202118203A-0-0-00)。
文摘Power line communication(PLC)has the potential to become the preferred technique for providing broadband communication to homes and offices with advantage of eliminating the need for new wiring infrastructure and reducing the cost.But it suffers from the impulsive noise because it introduces significant time variance into the power line channel.In this paper,a polar codes based orthogonal frequency division multiplexing(OFDM)PLC system is proposed to deal with the impulsive noise and thereby improve the transmission performance.Firstly,the impulsive noise is modelled with a multi-damped sine function by analyzing the time behavior of impulse events.Then the polar codes are used to combat the impulsive noise of PLC channel,and a low complexity bit-flipping decoding method based on CRC-aided successive cancellation list(CA-SCL)decoding algorithm is proposed.Simulations evaluate the proposed decoding algorithm and the results validate the suggested polar codes based OFDM-PLC scheme which can improve the BER performance of PLC with impulsive interference.
基金supported in part by the Key Program of National Natural Science Foundation of China (No.92067202)in part by the National Natural Science Foundation of China (No.62071058)in part by the Major Key Project of PCL (PCL2021A15)。
文摘After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the coding theory in the past two decades.In this survey,we retrospect the history of polar codes and summarize the advancement in the past ten years.First,the primary principle of channel polarization is investigated such that the basic construction,coding method and the classic successive cancellation(SC)decoding are reviewed.Second,in order to improve the performance of the finite code length,we introduce the guiding principle and conclude five design criteria for the construction,design and implementation of the polar code in the practical communication system based on the exemplar schemes in the literature.Especially,we explain the design principle behind the concatenated coding and rate matching of polar codes in 5G wireless system.Furthermore,the improved SC decoding algorithms,such as SC list(SCL)decoding and SC stack(SCS)decoding etc.,are investigated and compared.Finally,the research prospects of polar codes for the future 6G communication system are explored,including the optimization of short polar codes,coding construction in fading channels,polar coded modulation and HARQ,and the polar coded transmission,namely polar processing.Predictably,as a new coding methodology,polar codes will shine a light on communication theory and unveil a revolution in transmission technology.
基金supported by the National Key R&D Program of China[Grant Number 2020YFB1708300]the National Natural Science Foundation of China[Grant Number 52075184].
文摘Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginners,opensource codes are undoubtedly the best alternative to learning TO,which can elaborate the implementation of a method in detail and easily engage more people to employ and extend the method.In this paper,we present a summary of various open-source codes and related literature on TO methods,including solid isotropic material with penalization(SIMP),evolutionary method,level set method(LSM),moving morphable components/voids(MMC/MMV)methods,multiscale topology optimization method,etc.Simultaneously,we classify the codes into five levels,fromeasy to difficult,depending on their difficulty,so that beginners can get started and understand the form of code implementation more quickly.
基金supported in part by the National Natural Science Foundation of China(No.62071026,No.62201152 and No.61941106)the Natural Science Foundation of Fujian Province(No.2021J05034)Key Project of Science and Technology Innovation of Fujian Province(No.2021G02006)。
文摘Low-density parity-check(LDPC)codes are not only capacity-approaching,but also greatly suitable for high-throughput implementation.Thus,they are the most popular codes for high-speed data transmission in the past two decades.Thanks to the low-density property of their parity-check matrices,the optimal maximum a posteriori probability decoding of LDPC codes can be approximated by message-passing decoding with linear complexity and highly parallel nature.Then,it reveals that the approximation has to carry on Tanner graphs without short cycles and small trapping sets.Last,it demonstrates that well-designed LDPC codes with the aid of computer simulation and asymptotic analysis tools are able to approach the channel capacity.Moreover,quasi-cyclic(QC)structure is introduced to significantly facilitate their high-throughput implementation.In fact,compared to the other capacity-approaching codes,QC-LDPC codes can provide better area-efficiency and energy-efficiency.As a result,they are widely applied in numerous communication systems,e.g.,Landsat satellites,Chang’e Chinese Lunar mission,5G mobile communications and so on.What’s more,its extension to non-binary Galois fields has been adopted as the channel coding scheme for BeiDou navigation satellite system.
基金supported in part by the National Key Research and Development Program of China under Grant 2018YFB1802303in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LQ20F010010。
文摘Recently,a generalized successive cancellation list(SCL)decoder implemented with shiftedpruning(SP)scheme,namely the SCL-SP-ωdecoder,is presented for polar codes,which is able to shift the pruning window at mostωtimes during each SCL re-decoding attempt to prevent the correct path from being eliminated.The candidate positions for applying the SP scheme are selected by a shifting metric based on the probability that the elimination occurs.However,the number of exponential/logarithm operations involved in the SCL-SP-ωdecoder grows linearly with the number of information bits and list size,which leads to high computational complexity.In this paper,we present a detailed analysis of the SCL-SP-ωdecoder in terms of the decoding performance and complexity,which unveils that the choice of the shifting metric is essential for improving the decoding performance and reducing the re-decoding attempts simultaneously.Then,we introduce a simplified metric derived from the path metric(PM)domain,and a custom-tailored deep learning(DL)network is further designed to enhance the efficiency of the proposed simplified metric.The proposed metrics are both free of transcendental functions and hence,are more hardware-friendly than the existing metrics.Simulation results show that the proposed DL-aided metric provides the best error correction performance as comparison with the state of the art.
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.
文摘Deep holes are very important in the decoding of generalized RS codes, and deep holes of RS codes have been widely studied, but there are few works on constructing general linear codes based on deep holes. Therefore, we consider constructing binary linear codes by combining deep holes with binary BCH codes. In this article, we consider the 2-error-correcting binary primitive BCH codes and the extended codes to construct new binary linear codes by combining them with deep holes, respectively. Furthermore, three classes of binary linear codes are constructed, and then we determine the parameters and the weight distributions of these new binary linear codes.
基金supported in part by Joint Fund for Smart Computing of Natural Science Foundation of Shandong Province(ZR2019LZH001)Shandong University Youth Innovation Supporting Program(2019KJN020,2019KJN024)+1 种基金Shandong Key Research and Development Project(2019GGX101066)the Taishan Scholar Program of Shandong Province,the Natural Science Foundation of China(61701284).
文摘To remove the restriction on code length of polar codes,this paper proposes a construction scheme,called stepwise polar codes,which can gen-erate arbitrary-length polar codes.The stepwise polar codes are generated by sub-polar codes with different code lengths.To improve coding performance,sub-polar codes are united by polarization effect priority algorithm,which can reduce the number of in-completely polarized channels.Then,the construction method of the generator matrix of the stepwise po-lar code is presented.Furthermore,we prove that the proposed scheme has lower decoding complexity than punctured,multi-kernel polar codes.Simulation results show that the proposed method can achieve similar decoding performance compared with the conventional punctured polar codes,rate-compatible punctured polar code,PC-short and asymmetric polar codes(APC)when code length N=48 and 72,respectively.
基金supported in part with the Project on the Industry Key Technologies of Jiangsu Province(No.BE2017153)the Industry-University-Research Fund of ZTE Corporation.
文摘This paper presents an intelligent protograph construction algorithm.Protograph LDPC codes have shown excellent error correction performance and play an important role in wireless communications.Random search or manual construction are often used to obtain a good protograph,but the efficiency is not high enough and many experience and skills are needed.In this paper,a fast searching algorithm is proposed using the convolution neural network to predict the iterative decoding thresholds of protograph LDPC codes effectively.A special input data transformation rule is applied to provide stronger generalization ability.The proposed algorithm converges faster than other algorithms.The iterative decoding threshold of the constructed protograph surpasses greedy algorithm and random search by about 0.53 dB and 0.93 dB respectively under 100 times of density evolution.Simulation results show that quasi-cyclic LDPC(QC-LDPC)codes constructed from the proposed algorithm have competitive performance compared to other papers.