Ice causes impact damage to different positions of the compressor blade,destroys the structural integrity of the rotor structure,and then causes unbalanced failure and even causes nonlinear vibration accidents such as...Ice causes impact damage to different positions of the compressor blade,destroys the structural integrity of the rotor structure,and then causes unbalanced failure and even causes nonlinear vibration accidents such as collision and friction,which affects the execution of helicopter tasks.To investigate the influence of impact position on the damage form and dynamic response of blades during ice impact,a dynamic model by finite element-smooth particle fluid dynamic coupling method is created.The ice impact damage experiment of the TC4 plate based on the air gun experimental platform was carried out to verify the reliability of the simulation model.The damage of compressor blades impacted by ice from different positions under static and design speed of 45000 r/min is analyzed.The research results indicate that under static conditions,the damage caused by ice impact from the leading edge blade tip to the leading edge blade root first increases and then decreases,with the maximum damage occurring at the 66.7%blade height position on the leading edge.At the design speed,the closer the impact locations are to the leaf tip,the greater the damage is,and the plastic damage,equivalent stress,and kinetic energy loss of the ice impact are lower than the blade static condition.The research conclusion can provide theoretical reference and data support for the design of structural strength and protection of compressor blades in turboshaft engines.展开更多
In order to reach a compromise between fast response control and torques matching control in double turboshaft engines,research on nonlinear model predictive control for turboshaft engines based on double engines torq...In order to reach a compromise between fast response control and torques matching control in double turboshaft engines,research on nonlinear model predictive control for turboshaft engines based on double engines torques matching is conducted.Meanwhile,a Nonlinear Model Predictive Control(NMPC)method is proposed,which combines the control index of the power turbine speed with torques matching of double engines creatively.In addition to the control index,the difference of output torques between each engine is also incorporated in the objective function as a penalty term to ensure constant speed control and short torques matching time.Simulation results demonstrate that relative to unilateral torques matching,the settling time of the bidirectional matching method can be reduced by nearly 30.8%.Nevertheless,compared with the bidirectional torques matching method under the cascade PID controller,the NMPC method can decrease the overshoot of the power turbine speed by 65%and reduce the matching time by 15.5%synchronously.Besides fast response control of turboshaft engines,fast torques matching control of double engines is accomplished as well.展开更多
In order to compensate for the disturbance of wide variation in rotor demanded torque on power turbine speed and realize the fast response control of turboshaft engine during variable rotor speed,a cascade PID control...In order to compensate for the disturbance of wide variation in rotor demanded torque on power turbine speed and realize the fast response control of turboshaft engine during variable rotor speed,a cascade PID control method based on the acceleration estimator of gas turbine speed(Ngdot)and rotor predicted torque feedforward is proposed.Firstly,a two-speed Dual Clutch Transmission(DCT)model is applied in the integrated rotor/turboshaft engine system to achieve variable rotor speed.Then,an online estimation method of Ngdot based on the Linear Quadratic Gaussian with Loop Transfer Recovery(LQG/LTR)is proposed for power turbine speed cascade control.Finally,according to the cascade PID controller based on Ngdot estimator,a rotor demanded torque predicted method based on the Min-batch Gradient Descent-Neural Network(MGD-NN)is put forward to compromise the influence of rotor torque interference.The simulation results show that compared with cascade PID controller based on Ngdot estimator and the one combined with collective pitch feedforward control,the novel control method proposed can reduce the overshoot of power turbine speed by more than 20%,which possesses faster response,superior dynamic effect and satisfactory robustness performance.The control method proposed can realize the fast response control of turboshaft engine with variable rotor speed better.展开更多
This paper focuses on investigations encompassing comparative assessment of gasturbine cycle options.More specifically,investigation was caried out of technical performanceof turboshaft engine cycles based on existing...This paper focuses on investigations encompassing comparative assessment of gasturbine cycle options.More specifically,investigation was caried out of technical performanceof turboshaft engine cycles based on existing simple cycle(SC)and its projected modifiedcycles for civil helicopter application.Technically,thermal efficiency,specific fuel consump-tion,and power output are of paramount importance to the overall performance of gas urbineengines.In course of carrying out this research,turbomatch software established at CranfieldUniversity based on gas turbine theory was applied to conduct simulation of a simple cycle(baseline)two-spool helicopter turboshaft engine model with free power turbine.Similarly,some modified gas urbine cycle configurations incoporating unconventional components,such as engine cycle with low pressure compressor(LPC)zero-staged,recuperated enginecycle,and intercooled/recuperated(ICR)engine cycle,were also simulated.In doing so,designpoint(DP)and off-design point(OD)performances of the engine models were established.Thepercentage changes in performance parameters of the modified cycle engines over the simplecycle were evaluated and it was found that to a large extent,the modified engine cycles withunconventional components exhibit better performances in terms of thermal efficiency andspecific fuel consumption than the traditional simple cycle engine.This research made use ofpublic domain open source references.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52175091 and 52075165)the National Natural Science Foundation of Hunan Province(Grant No.2023JJ30247)+1 种基金the Key Research and Development Program of Hunan Province(Grant No.2022GK2023)the AECC Independent Innovation Special Foundation(Grant No.KY-1003-2021-0019).
文摘Ice causes impact damage to different positions of the compressor blade,destroys the structural integrity of the rotor structure,and then causes unbalanced failure and even causes nonlinear vibration accidents such as collision and friction,which affects the execution of helicopter tasks.To investigate the influence of impact position on the damage form and dynamic response of blades during ice impact,a dynamic model by finite element-smooth particle fluid dynamic coupling method is created.The ice impact damage experiment of the TC4 plate based on the air gun experimental platform was carried out to verify the reliability of the simulation model.The damage of compressor blades impacted by ice from different positions under static and design speed of 45000 r/min is analyzed.The research results indicate that under static conditions,the damage caused by ice impact from the leading edge blade tip to the leading edge blade root first increases and then decreases,with the maximum damage occurring at the 66.7%blade height position on the leading edge.At the design speed,the closer the impact locations are to the leaf tip,the greater the damage is,and the plastic damage,equivalent stress,and kinetic energy loss of the ice impact are lower than the blade static condition.The research conclusion can provide theoretical reference and data support for the design of structural strength and protection of compressor blades in turboshaft engines.
基金co-supported by the National Natural Science Foundation of China(No.51576096)Qing Lan and 333 Project and Research Funds for Central Universities(No.NF2018003).
文摘In order to reach a compromise between fast response control and torques matching control in double turboshaft engines,research on nonlinear model predictive control for turboshaft engines based on double engines torques matching is conducted.Meanwhile,a Nonlinear Model Predictive Control(NMPC)method is proposed,which combines the control index of the power turbine speed with torques matching of double engines creatively.In addition to the control index,the difference of output torques between each engine is also incorporated in the objective function as a penalty term to ensure constant speed control and short torques matching time.Simulation results demonstrate that relative to unilateral torques matching,the settling time of the bidirectional matching method can be reduced by nearly 30.8%.Nevertheless,compared with the bidirectional torques matching method under the cascade PID controller,the NMPC method can decrease the overshoot of the power turbine speed by 65%and reduce the matching time by 15.5%synchronously.Besides fast response control of turboshaft engines,fast torques matching control of double engines is accomplished as well.
基金co-supported by the National Natural Science Foundation of China,China(Nos.51576096 and 51906102)Qing Lan and 333 Project,the Fundamental Research Funds for the Central Universities,China(No.NT2019004)+3 种基金National Science and Technology Major Project China(No.2017-V-0004-0054)Research on the Basic Problem of Intelligent Aero-engine,China(No.2017-JCJQ-ZD-04721)China Postdoctoral Science Foundation Funded Project,China(No.2019M661835)Aeronautics Power Foundation,China(No.6141B09050385)。
文摘In order to compensate for the disturbance of wide variation in rotor demanded torque on power turbine speed and realize the fast response control of turboshaft engine during variable rotor speed,a cascade PID control method based on the acceleration estimator of gas turbine speed(Ngdot)and rotor predicted torque feedforward is proposed.Firstly,a two-speed Dual Clutch Transmission(DCT)model is applied in the integrated rotor/turboshaft engine system to achieve variable rotor speed.Then,an online estimation method of Ngdot based on the Linear Quadratic Gaussian with Loop Transfer Recovery(LQG/LTR)is proposed for power turbine speed cascade control.Finally,according to the cascade PID controller based on Ngdot estimator,a rotor demanded torque predicted method based on the Min-batch Gradient Descent-Neural Network(MGD-NN)is put forward to compromise the influence of rotor torque interference.The simulation results show that compared with cascade PID controller based on Ngdot estimator and the one combined with collective pitch feedforward control,the novel control method proposed can reduce the overshoot of power turbine speed by more than 20%,which possesses faster response,superior dynamic effect and satisfactory robustness performance.The control method proposed can realize the fast response control of turboshaft engine with variable rotor speed better.
文摘This paper focuses on investigations encompassing comparative assessment of gasturbine cycle options.More specifically,investigation was caried out of technical performanceof turboshaft engine cycles based on existing simple cycle(SC)and its projected modifiedcycles for civil helicopter application.Technically,thermal efficiency,specific fuel consump-tion,and power output are of paramount importance to the overall performance of gas urbineengines.In course of carrying out this research,turbomatch software established at CranfieldUniversity based on gas turbine theory was applied to conduct simulation of a simple cycle(baseline)two-spool helicopter turboshaft engine model with free power turbine.Similarly,some modified gas urbine cycle configurations incoporating unconventional components,such as engine cycle with low pressure compressor(LPC)zero-staged,recuperated enginecycle,and intercooled/recuperated(ICR)engine cycle,were also simulated.In doing so,designpoint(DP)and off-design point(OD)performances of the engine models were established.Thepercentage changes in performance parameters of the modified cycle engines over the simplecycle were evaluated and it was found that to a large extent,the modified engine cycles withunconventional components exhibit better performances in terms of thermal efficiency andspecific fuel consumption than the traditional simple cycle engine.This research made use ofpublic domain open source references.