期刊文献+
共找到189篇文章
< 1 2 10 >
每页显示 20 50 100
Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators
1
作者 方子淇 宗豪华 +2 位作者 吴云 梁华 苏志 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期94-103,共10页
To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. Th... To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned. 展开更多
关键词 plasma actuator flow control drag reduction AIRFOIL
下载PDF
The investigation and optimization of drag reduction in turbulent flow of Newtonian fluid passing through horizontal pipelines using functionalized magnetic nanophotocatalysts and lecithin 被引量:3
2
作者 Nadia Esfandiari Reza Zareinezhad Zahra Habibi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第1期63-75,共13页
The nanophotocatalysts were synthesized in four stages and evaluated by FTIR, FESEM and VSM analysis. The influence of nanofluids containing functionalized magnetic Ti O2 nanophotocatalyst and dipalmitoylphosphatidylc... The nanophotocatalysts were synthesized in four stages and evaluated by FTIR, FESEM and VSM analysis. The influence of nanofluids containing functionalized magnetic Ti O2 nanophotocatalyst and dipalmitoylphosphatidylcholine lecithin in drag reduction of turbulent flow in four horizontal pipelines was studied. The effective parameters on drag reduction(nanoparticle concentration, surfactant concentration, p H and Re number) were investigated and optimized in each pipeline using response surface method. The drag reduction in 1/2 " galvanized, 3/4" galvanized, 1/2 "five-layer and 1/2" cuprous pipelines was found 99.1%, 92.5%, 87.6% and 85.2%, respectively. The model adequacy was measured using ANOVA. Based on the high determination coefficient, more than 95% of variance of experimental data in all pipelines was described by quadratic model. 展开更多
关键词 drag reduction LECITHIN FUNCTIONALIZED MAGNETIC nanophotocatalyst TURBULENT flow Response surface
下载PDF
Active control of turbulence for drag reduction based on the detection of near-wall streamwise vortices by wall information 被引量:4
3
作者 Mingwei Ge Chunxiao Xu Gui-Xiang Cui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第4期512-522,共11页
The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated v... The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated via direct numerical simulation (DNS) databases of fully developed turbulent channel flow at a low Reynolds number. In the stan- dard turbulent channel flow, the results show that all the wall measurable variables are closely associated with the NWSV. But after applying a stochastic interference, the relation based on τwx breaks down while the correlations based on Pw and τwz are still robust. Hence, two wall flow quantities based on Pw and τwz are proposed to detect the NWSV. As an appli- cation, two new control schemes are developed to suppress the near-wall vortical structures using the actuation of wall blowing/suction and obtain 16 % and 11% drag reduction, respectively. 展开更多
关键词 Active control Measurable wall information Near-wall streamwise vortices Turbulent drag reduction
下载PDF
Modeling of drag reduction in turbulent channel flow with hydrophobic walls by FVM method and weakly-compressible flow equations 被引量:2
4
作者 Ling Li Ming-Shun Yuan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第2期200-207,共8页
In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack’s scheme on... In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack’s scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also foundthat the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects. 展开更多
关键词 Wall turbulences · Large eddy simulation · drag reduction · Hydrophobic wall · Weakly compressible flow
下载PDF
An experimental study of drag reduction by nanofluids in slug two-phase flow of air and water through horizontal pipes 被引量:1
5
作者 A.R.Pouranfard D.Mowla F.Esmaeilzadeh 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第3期471-475,共5页
This study investigates the effect of injecting nanofluids containing nano-SiO_2 as drag reducing agents(DRA) at different concentrations on the pressure drop of air-water flow through horizontal pipe.The test fluid u... This study investigates the effect of injecting nanofluids containing nano-SiO_2 as drag reducing agents(DRA) at different concentrations on the pressure drop of air-water flow through horizontal pipe.The test fluid used in this study was air-water with nano-SiO_2 particles at 0.1%-1%mass concentration.The test sections of the experimental set-up were five pipes of the same length of 9 m with ID from 0.0127m-0.03175m(0.5 to 1.25 in).Airwater flow was run in slug flow regime under different volumetric flow rates.The results of drag reduction(η%)indicated that the addition of DRA could be efficient up to some dosage.Drag reduction performed much better for smaller pipe diameters than it did for larger ones.For various nanosilica concentrations,the maximum drag reduction was about 66.8%for 0.75%mass concentration of nanosilica. 展开更多
关键词 Nanofluid drag reduction Turbulent two-phase flow Horizontal pipeline
下载PDF
Drag reduction of turbulent channel flows over an anisotropic porous wall with reduced spanwise permeability 被引量:3
6
作者 Qingxiang LI Ming PAN +1 位作者 Quan ZHOU Yuhong DONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第7期1041-1052,共12页
The direct numerical simulation (DNS) is carried out for the incompressible viscous turbulent flows over an anisotropic porous wall. Effects of the anisotropic porous wall on turbulence modifications as well as on the... The direct numerical simulation (DNS) is carried out for the incompressible viscous turbulent flows over an anisotropic porous wall. Effects of the anisotropic porous wall on turbulence modifications as well as on the turbulent drag reduction are investigated. The simulation is carried out at a friction Reynolds number of 180, which is based on the averaged friction velocity at the interface between the porous medium and the clear fluid domain. The depth of the porous layer ranges from 0.9 to 54 viscous units. The permeability in the spanwise direction is set to be lower than the other directions in the present simulation. The maximum drag reduction obtained is about 15.3% which occurs for a depth of 9 viscous units. The increasing of drag is addressed when the depth of the porous layer is more than 25 wall units. The thinner porous layer restricts the spanwise extension of the streamwise vortices which suppresses the bursting events near the wall. However, for the thicker porous layer, the wall-normal fluctuations are enhanced due to the weakening of the wall-blocking effect which can trigger strong turbulent structures near the wall. 展开更多
关键词 direct numerical simulation (DNS) ANISOTROPIC POROUS MEDIUM drag reduction TURBULENT open channel flow
下载PDF
Mechanism of drag reduction by spanwise oscillating Lorentz force in turbulent channel flow 被引量:1
7
作者 Leping Huang Baochun Fan Dongjie Mei 《Theoretical & Applied Mechanics Letters》 2012年第1期67-70,共4页
Numerical simulations and experimental research are both carried out to investigate the controlled effect of spanwise oscillating Lorentz force on a turbulent channel flow. The variations of the streaks and the skin f... Numerical simulations and experimental research are both carried out to investigate the controlled effect of spanwise oscillating Lorentz force on a turbulent channel flow. The variations of the streaks and the skin friction drag are obtained through the PIV system and the drag measurement system, respectively. The flow field in the near-wall region is shown through direct numerical simulations utilizing spectral method. The experimental results are consistent with the numerical simulation results qualitatively, and both the results indicate that the streaks are tilted into the spanwise direction and the drag reduction utilizing spanwise oscillating Lorentz forces can be realized. The numerical simulation results reveal more detail of the drag reduction mechanism which can be explained, since the spanwise vorticity generated from the interaction between the induced Stokes layer and intrinsic turbulent flow in the near-wall region can make the longitudinal vortices tilt and oscillate, and leads to turbulence suppression and drag reduction. 展开更多
关键词 turbulent control channel flow drag reduction Lorentz force direct numerical simulation
下载PDF
Influence of rheological parameters in all drag reduction regimes of turbulent channel flow with polymer additives
8
作者 李昌烽 赵作广 +1 位作者 吴桂芬 冯晓东 《Journal of Central South University》 SCIE EI CAS 2008年第S1期275-279,共5页
The influence of rheological parameters on vortex dynamics and the extent of drag reduction (DR) were deciphered via extensively analyzing the hi-fidelity direct numerical simulation results of the turbulent channel f... The influence of rheological parameters on vortex dynamics and the extent of drag reduction (DR) were deciphered via extensively analyzing the hi-fidelity direct numerical simulation results of the turbulent channel flow with polymer solutions. It has been observed that in all drag reduction regimes from the onset of DR to maximum drag reduction (MDR) limit, the Deborah number is defined as the product of an effective Weissenberg number, and the root mean square streamwise vorticity fluctuation remains O(1) in the near wall region. The ratio of the average lifetime of axial vortices to the vortex rotating duration decreases with increasing DR, and MDR is achieved when these time scales become nearly equal. Based on these observations a simple framework is proposed adequately to describe the influence of polymer additives on the extent of DR from onset to MDR as well as the universality of the MDR in flow systems with polymer additives. 展开更多
关键词 drag reduction DILUTE POLYMERIC solutions TURBULENT channel flows FENE-P model
下载PDF
Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula 被引量:4
9
作者 Bin WU Chao GAO +3 位作者 Feng LIU Ming XUE Yushuai WANG Borui ZHENG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第4期107-114,共8页
It is a very difficult task to develop a method of reducing turbulent boundary layer drag.However,in recent years,plasma flow control technology has demonstrated huge potential in friction drag reduction.To further in... It is a very difficult task to develop a method of reducing turbulent boundary layer drag.However,in recent years,plasma flow control technology has demonstrated huge potential in friction drag reduction.To further investigate this issue,a smooth plate model was designed as a testing object arranged with a bidirectional dielectric-barrier-discharge(DBD)plasma actuator.In addition,measurement of skin friction drag was achieved by applying hot wire anemometry to obtain the velocity distribution of the turbulent boundary layer.A method of quantifying the friction drag effect was adopted based on the Spalding formula fitted with the experiment data.When plasma actuation was conducted,a velocity defect occurred at the two measuring positions,compared with the no plasma control condition;this means that the DBD plasma actuation could reduce the drag successfully in the downstream of the actuator.Moreover,drag reduction caused by backward actuation was slightly more efficient than that caused by forward actuation.With an increasing distance from plasma actuation,the drag-reduction effect could become weaker.Experimental results also show that the improvement of drag-reduction efficiency using a DBD plasma actuator can achieve about 8.78%in the local region of the experimental flat model. 展开更多
关键词 DBD plasma actuator flow control Spalding FORMULA drag reduction TURBULENT boundary layer
下载PDF
Numerical study of the turbulent channel flow under space-dependent electromagnetic force control at different Reynolds numbers 被引量:2
10
作者 Daiwen JIANG Hui ZHANG +3 位作者 Baochun FAN Zijie ZHAO Jian LI Mingyue GUI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第4期435-448,共14页
In this paper, the control of turbulent channel flow by space-dependent electromagnetic force and the mechanism of drag reduction are investigated with the direct numerical simulation(DNS) methods for different Reynol... In this paper, the control of turbulent channel flow by space-dependent electromagnetic force and the mechanism of drag reduction are investigated with the direct numerical simulation(DNS) methods for different Reynolds numbers. A formulation is derived to express the relation between the drag and the Reynolds shear stress. With the application of optimal electromagnetic force, the in-depth relations among characteristic structures in the flow field, mean Reynolds shear stress, and the effect of drag reduction for different Reynolds numbers are discussed. The results indicate that the maximum drag reductions can be obtained with an optimal combination of parameters for each case of different Reynolds numbers. The regular quasi-streamwise vortex structures, which appear in the flow field, have the same period with that of the electromagnetic force.These structures suppress the random velocity fluctuations, which leads to the absolute value of mean Reynolds shear stress decreasing and the distribution of that moving away from the wall. Moreover, the wave number of optimal electromagnetic force increases,and the scale of the regular quasi-streamwise vortex structures decreases as the Reynolds number increases. Therefore, the rate of drag reduction decreases with the increase in the Reynolds number since the scale of the regular quasi-streamwise vortex structures decreases. 展开更多
关键词 flow control drag reduction ELECTROMAGNETIC FORCE TURBULENT channel flow
下载PDF
Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet 被引量:3
11
作者 Biao-Hui Li Kang-Jun Wang +1 位作者 Yu-Fei Wang Nan Jiang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第2期453-459,共7页
This work investigates the active control of a fully developed turbulent boundary layer by a submerged synthetic jet actuator.The impacts of the control are explored by measuring the streamwise velocities using partic... This work investigates the active control of a fully developed turbulent boundary layer by a submerged synthetic jet actuator.The impacts of the control are explored by measuring the streamwise velocities using particle image velocimetry,and reduction of the skin-friction drag is observed in a certain range downstream of the orifice.The coherent structure is defined and extracted using a spatial two-point correlation function,and it is found that the synthetic jet can efficiently reduce the streamwise scale of the coherent structure.Proper orthogonal decomposition analysis reveals that large-scale turbulent kinetic energy is significantly attenuated with the introduction of a synthetic jet.The conditional averaging results show that the induction effect of the prograde vortex on the low-speed fluid in a large-scale fluctuation velocity field is deadened,thereby suppressing the bursting process near the wall. 展开更多
关键词 synthetic jet active control turbulent boundary layer drag reduction
下载PDF
Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation 被引量:1
12
作者 Borui ZHENG Yuanzhong JIN +3 位作者 Minghao YU Yueqiang LI Bin WU Quanlong CHEN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第11期26-36,共11页
This work studies the turbulent drag reduction(TDR)effect of a flat plate model using a spanwise slot blowing pulsed plasma actuator(SBP-PA).Wind tunnel experiments are carried out under a Reynolds number of 1.445... This work studies the turbulent drag reduction(TDR)effect of a flat plate model using a spanwise slot blowing pulsed plasma actuator(SBP-PA).Wind tunnel experiments are carried out under a Reynolds number of 1.445×10^(4).Using a hot-wire anemometer and an electrical data acquisition system,the influences of millisecond pulsed plasma actuation with different burst frequencies and duty cycles on the microscale coherent structures near the wall of the turbulent boundary layer(TBL)are studied.The experimental results show that the SBP-PA can effectively reduce the frictional drag of the TBL.When the duty cycle exceeds 30%,the TDR rate is greater than 11%,and the optimal drag reduction rate of 13.69%is obtained at a duty cycle of 50%.Furthermore,optimizing the electrical parameters reveals that increasing the burst frequency significantly reduces the velocity distribution in the logarithmic region of the TBL.When the normalized burst frequency reaches f+=2πf_(p)d/U_(∞)=7.196,the optimal TDR effectiveness is 16.97%,indicating a resonance phenomenon between the pulsed plasma actuation and the microscale coherent structures near the wall.Therefore,reasonably selecting the electrical parameters of the plasma actuator is expected to significantly improve the TDR effect. 展开更多
关键词 turbulent boundary layer control plasma flow control HOT-WIRE turbulent frictional drag turbulent drag reduction
下载PDF
Numerical investigation of turbulent channel flow controlled by spatially oscillating spanwise Lorentz force
13
作者 Wentang WU Yanji HONG Baochun FAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第9期1113-1120,共8页
A formulation of the skin-friction drag related to the Reynolds shear stress in a turbulent channel flow is derived. A direct numerical simulation (DNS) of the turbulent control is performed by imposing the spatiall... A formulation of the skin-friction drag related to the Reynolds shear stress in a turbulent channel flow is derived. A direct numerical simulation (DNS) of the turbulent control is performed by imposing the spatially oscillating spanwise Lorentz force. Under the action of the Lorentz force with several proper control parameters, only the periodi- cally well-organized streamwise vortices are finally observed in the near-wall region. The Reynolds shear stress decreases dramatically, especially in the near-wall area, resulting in a drag reduction. 展开更多
关键词 turbulent channel flow direct numerical simulation (DNS) drag reduction Lorentz force
下载PDF
Hydrodynamic metamaterials for flow manipulation:Functions and prospects
14
作者 Bin Wang Jiping Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期87-94,共8页
As an emerging branch in the area of flow control,hydrodynamic metamaterials have received considerable attention because of their novel flow control capabilities.In this review,we present prominent studies on hydrody... As an emerging branch in the area of flow control,hydrodynamic metamaterials have received considerable attention because of their novel flow control capabilities.In this review,we present prominent studies on hydrodynamic metamateri-als in porous media,non-porous media,creeping flows,and non-creeping flows from several perspectives.In particular,for hydrodynamic cloaking metamaterials,we unify the descriptive form of transformation hydrodynamics for hydrodynamic metamaterials in porous and non-porous media by the hydrodynamic governing equations.Finally,we summarize and out-look the current shortcomings and challenges of current hydrodynamic metamaterials and propose possible future research directions,especially for microfluidics,exotic fluids,hydrodynamic cloaking in high Reynolds numbers,and turbulence. 展开更多
关键词 flow control METAMATERIALS hydrodynamic cloaks drag reduction liquid diodes
下载PDF
LES Investigation of Drag-Reducing Mechanism of Turbulent Channel Flow with Surfactant Additives
15
作者 Jingfa Li Bo Yu +1 位作者 Qianqian Shao Dongliang Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期541-563,共23页
In this work,the drag-reducing mechanism of high-Reynoldsnumber turbulent channel flow with surfactant additives is investigated by using large eddy simulation(LES)method.An N-parallel finitely extensible nonlinear el... In this work,the drag-reducing mechanism of high-Reynoldsnumber turbulent channel flow with surfactant additives is investigated by using large eddy simulation(LES)method.An N-parallel finitely extensible nonlinear elastic model with Peterlin’s approximation(FENE-P)is used to describe the rheological behaviors of non-Newtonian fluid with surfactant.To close the filtered LES equations,a hybrid subgrid scale(SGS)model coupling the spatial filter and temporal filter is applied to compute the subgrid stress and other subfilter terms.The finite difference method and projection algorithm are adopted to solve the LES governing equations.To validate the correctness of our LES method and in-house code,the particle image velocimetry(PIV)experiment is carried out and representative measured results are compared with LES results in detail.Then the flow characteristics and drag-reducing mechanism of turbulent channel flow with surfactant are investigated from the perspective of drag reduction rate,mean velocity,fluctuation of deformation rate,shear stress,transport and dissipation of turbulent kinetic energy,and turbulent coherent structures.This research can shed a light on the application of turbulent drag reduction technique in district heating,petroleum transport,etc. 展开更多
关键词 Large eddy simulation turbulent flow drag reduction hybrid subgrid scale model N-parallel FENE-P model PIV experiment
下载PDF
Plasma Virtual Actuators for Flow Control
16
作者 Kwing-So Choi Timothy N. Jukes +4 位作者 Richard D. Whalley Lihao Feng Jinjun Wang Takayuki Matsunuma Takehiko Segawa 《Journal of Flow Control, Measurement & Visualization》 2015年第1期22-34,共13页
Dielectric-barrier-discharge (DBD) plasma actuators are all-electric devices with no moving parts. They are made of a simple construction, consisting only of a pair of electrodes sandwiching a dielectric sheet. When A... Dielectric-barrier-discharge (DBD) plasma actuators are all-electric devices with no moving parts. They are made of a simple construction, consisting only of a pair of electrodes sandwiching a dielectric sheet. When AC voltage is applied, air surrounding the upper electrode is ionized, which is attracted towards the charged dielectric surface to form a wall jet. Control of flow over land and air vehicles as well as rotational machinery can be carried out using this jet flow on demand. Here we review recent developments in plasma virtual actuators for flow control that can replace conventional actuators for better aerodynamic performance. 展开更多
关键词 flow control DBD PLASMA Actuators AERODYNAMICS drag reduction turbulence
下载PDF
Coherent structures in wall turbulence and mechanism for drag reduction control 被引量:6
17
作者 XU ChunXiao DENG BingQing +1 位作者 HUANG WeiXi CUI GuiXiang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第6期1053-1061,共9页
Herein is introduced the mechanism for active control influencing the generation of the near-wall streamwise vortices,which are closely related to the production of high skin friction in wall-bounded turbulent flows.A... Herein is introduced the mechanism for active control influencing the generation of the near-wall streamwise vortices,which are closely related to the production of high skin friction in wall-bounded turbulent flows.A new opposition control scheme with adjusting control amplitude is proposed and evaluated in turbulent channel flow by direct numerical simulations.The maximum drag reduction rate can be greatly enhanced by the strengthened control.Finally the effectiveness of the control to the coherent structures at high Reynolds numbers is investigated by using a linear transient growth model. 展开更多
关键词 wall turbulence coherent structure drag reduction active control
原文传递
Drag reduction via turbulent boundary layer flow control 被引量:12
18
作者 ABBAS Adel BUGEDA Gabriel +5 位作者 FERRER Esteban FU Song PERIAUX Jacques PONS-PRATS Jordi VALERO Eusebio ZHENG Yao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第9期1281-1290,共10页
Turbulent boundary layer control(TBLC) for skin-friction drag reduction is a relatively new technology made possible through the advances in computational-simulation capabilities,which have improved the understanding ... Turbulent boundary layer control(TBLC) for skin-friction drag reduction is a relatively new technology made possible through the advances in computational-simulation capabilities,which have improved the understanding of the flow structures of turbulence.Advances in micro-electronic technology have enabled the fabrication of active device systems able to manipulating these structures.The combination of simulation,understanding and micro-actuation technologies offers new opportunities to significantly decrease drag,and by doing so,to increase fuel efficiency of future aircraft.The literature review that follows shows that the application of active control turbulent skin-friction drag reduction is considered of prime importance by industry,even though it is still at a low technology readiness level(TRL).This review presents the state of the art of different technologies oriented to the active and passive control for turbulent skin-friction drag reduction and contributes to the improvement of these technologies. 展开更多
关键词 turbulent boundary layer flow control drag reduction skin-friction drag reduction
原文传递
Predetermined control of turbulent boundary layer with a piezoelectric oscillator 被引量:3
19
作者 郑小波 姜楠 张浩 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期669-673,共5页
With a piezoelectric (PZT) oscillator, the predetermined controls of the turbulent boundary layer (TBL) are effective in reducing the drag force. The stream-wise velocities in the TBL are accurately measured downs... With a piezoelectric (PZT) oscillator, the predetermined controls of the turbulent boundary layer (TBL) are effective in reducing the drag force. The stream-wise velocities in the TBL are accurately measured downstream of the oscillator driven by an adjustable power source. The mean velocity profiles in the inner and outer scales are reported and the skin friction stresses with different voltage parameters are compared. Reduction of integral spatial scales in the inner region below y+ of 30 suggests that the oscillator at work breaks up the near-wall stream-wise vortices responsible for high skin friction. For the TBL at Reo of 2183, the controls with a frequency of 160Hz are superior among our experiments and a relative drag reduction rate of 26.83% is exciting. Wavelet analyses provide a reason why the controls with this special frequency perform best. 展开更多
关键词 turbulent boundary layer predetermined control drag reduction piezoelectric oscillator
下载PDF
Investigation of vortical flow over bluff bodies with base cavities 被引量:2
20
作者 Shu-Cheng Pan Jin-Sheng Cai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1238-1247,共10页
Based on our previous research about drag reduction in term of the base cavity length using two dimensional simulations, this paper describes a numerical study of a bluff body of which the number of base cavities is s... Based on our previous research about drag reduction in term of the base cavity length using two dimensional simulations, this paper describes a numerical study of a bluff body of which the number of base cavities is successively increased and the cavity geometries are also modified to assume different shapes. Here we attempt to find an effective configuration to reduce the drag by increasing the number of base cavities. The numerical simulations examining varied number of base cavities reveal the presence of different strength of vortices in the wake zone which is the reason why the drag coefficients are distinctly different for different cases. In the case with double and triple rectangular cavities, we use the pressure contours snapshots at successive time instants to describe the wake evolution. We further investigate the effect of variable base cavity shapes for a constant cavity length at an identical time instant. A total of two different geometries of base cavities are discussed here: the rectangular and the sinusoidal cavities with sharp and rounded trailing edges, respectively. The numerical results reveal that the for- mer is an effective drag reduction configuration which can produce a significant base pressure recovery corresponding to the strength of the vortices shown in the pressure contour figures. While the latter shows no obvious reduction in drag coefficient and a similar intensity of vortex in the wake zone compared with the unmodified case. Reductions in drag are observed for all the investigated cavity configurations, and additionally it is found that the magnitude of the reduction bears a direct relationship with the number of the cavities up to a certain minimum value. 展开更多
关键词 flow control drag reduction. Bluff body Basecavity
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部