Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i...Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.展开更多
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ...As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards.展开更多
Turbulence in complex environments such as the atmosphere and biological media has always been a great challenge to the application of beam propagation in optical communication, optical trapping and manipulation. To o...Turbulence in complex environments such as the atmosphere and biological media has always been a great challenge to the application of beam propagation in optical communication, optical trapping and manipulation. To overcome this challenge, this study comprehensively investigates the robust propagation of traditional Gaussian and autofocusing beams in turbulent environments. In order to select stable beams that exhibit high intensity and high field gradient at the focal position in complex environments, Kolmogorov turbulence theory is used to simulate the propagation of beams in atmospheric turbulence based on the multi-phase screen method. We systematically analyze the intensity fluctuations, the variation of the coherence factor and the change in the scintillation index with propagation distance. The analysis reveals that the intensity fluctuations of autofocusing beams are significantly smaller than those of Gaussian beams, and the coherence of autofocusing beams is better than that of Gaussian beams under turbulence. Moreover, autofocusing beams exhibit less oscillation than Gaussian beams, indicating that autofocusing beams propagate in complex environments with less distortion and intensity fluctuation. Overall, this work clearly demonstrates that autofocusing beams exhibit higher stability in propagation compared with Gaussian beams, showing great promise for applications such as optical trapping and manipulation in complex environments.展开更多
A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI dat...A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.展开更多
We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical ...We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams.展开更多
This paper reports an improved time-delay estimation(TDE)technique for the derivation of turbulence structures based on gas-puff imaging data.The improved TDE technique,integrating an inverse timing search and hierarc...This paper reports an improved time-delay estimation(TDE)technique for the derivation of turbulence structures based on gas-puff imaging data.The improved TDE technique,integrating an inverse timing search and hierarchical strategy,offers superior accuracy in calculating turbulent velocity field maps and analyzing blob dynamics,which has the power to obtain the radial profiles of equilibrium poloidal velocity,blob size and its radial velocity,even the fluctuation analysis,such as geodesic acoustic modes and quasi-coherent mode,etc.This improved technique could provide important 2D information for the study of edge turbulence and blob dynamics,advancing the understanding of edge turbulence physics in fusion plasmas.展开更多
The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic...The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons.The simulations use an extended fluid code(ExFC)based on a four-field gyro-Landau-fluid(GLF)model.The multispecies form of the normalized GLF equations is presented,which guarantees the self-consistent evolution of both bulk ions and impurities.With parametric profiles of the cyclone base case,well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles.For a fixed temperature profile,it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities,which is contrary to the linear and quasilinear predictions.The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process,indicating that the destabilization of the outwardly peaked impurity profile is a transient state response.Furthermore,the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient,which is likely to be dominated by linear effects.These results suggest that the improvement in plasma confinement could be attributed to the impurities,most likely through adjusting both heat diffusivity and the critical temperature gradient.展开更多
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis...The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.展开更多
The Stokes production coefficient(E_(6))constitutes a critical parameter within the Mellor-Yamada type(MY-type)Langmuir turbulence(LT)parameterization schemes,significantly affecting the simulation of turbulent kineti...The Stokes production coefficient(E_(6))constitutes a critical parameter within the Mellor-Yamada type(MY-type)Langmuir turbulence(LT)parameterization schemes,significantly affecting the simulation of turbulent kinetic energy,turbulent length scale,and vertical diffusivity coefficient for turbulent kinetic energy in the upper ocean.However,the accurate determination of its value remains a pressing scientific challenge.This study adopted an innovative approach by leveraging deep learning technology to address this challenge of inferring the E_(6).Through the integration of the information of the turbulent length scale equation into a physical-informed neural network(PINN),we achieved an accurate and physically meaningful inference of E_(6).Multiple cases were examined to assess the feasibility of PINN in this task,revealing that under optimal settings,the average mean squared error of the E_(6) inference was only 0.01,attesting to the effectiveness of PINN.The optimal hyperparameter combination was identified using the Tanh activation function,along with a spatiotemporal sampling interval of 1 s and 0.1 m.This resulted in a substantial reduction in the average bias of the E_(6) inference,ranging from O(10^(1))to O(10^(2))times compared with other combinations.This study underscores the potential application of PINN in intricate marine environments,offering a novel and efficient method for optimizing MY-type LT parameterization schemes.展开更多
A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the co...A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the condition of various regular wave heights and current velocities,with the constant water depth being 0.60 m to create the desired submerged scenarios.Results show that the vegetation-induced wave dissipation is enhanced with the increasing incident wave height.A larger velocity magnititude leads to a greater wave height attenuation for both following and opposing current conditions.Moreover,there is a strong positive linear correlation between the damping coefficientβand the relative wave height H_(0)/h,especially for pure wave conditions.For the velocity profile,the distributions of U_(min)and U_(max)show different patterns under combined wave and current.The time-averaged turbulent kinetic energy(TKE)vary little under pure wave and U_(c)=±0.05 m/s conditions.With the increase of flow velocity amplitude,the time-averaged TKE shows a particularly pronounced increase trend at the top of the canopy.The vegetation drag coefficients are obtained by a calibration approach.The empirical relations of drag coefficient with Reynolds and Keulegane-Carpenter numbers are proposed to further understand the wave-current-vegetation interaction mechanism.展开更多
Adaptive optics systems are the most powerful tools to counteract the image blurring caused by atmospheric turbulence,allowing ground-based telescopes to capture high-resolution images.A critical parameter influencing...Adaptive optics systems are the most powerful tools to counteract the image blurring caused by atmospheric turbulence,allowing ground-based telescopes to capture high-resolution images.A critical parameter influencing adaptive optics system performance is the atmospheric refractive index structure constant,C_(n)^(2),which characterizes the intensity of atmospheric optical turbulence as a function of altitude.Given its simplicity,the lunar scintillometer is the preferred method for detecting atmospheric turbulence in challenging environments like Dome A in Antarctica,where sites are still in the developmental stages and local environmental conditions are extremely harsh.However,optimizing the performance of such instruments requires carefully determining the baseline configuration of photon sensors according to each site's specific optical turbulence profile characteristics.This study uses a Monte Carlo method to identify the optimal configuration for the KunLun Turbulence Profiler(KLTP),an instrument comparable to the lunar scintillometer,developed for use at Dome A.Simulations conducted using the obtained optimal baseline configuration recovered three different model optical turbulence profiles,demonstrating the effectiveness of our method in obtaining an optimal baseline configuration.Our approach can be easily applied to baseline design for similar turbulence profilers at other sites.展开更多
This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Re...This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth.展开更多
In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated...In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically.展开更多
The upper mixed layer depth(h)has a significant seasonal variation in the real ocean and the low-order statistics of Langmuir turbulence are dramatically influenced by the upper mixed layer depth.To explore the influe...The upper mixed layer depth(h)has a significant seasonal variation in the real ocean and the low-order statistics of Langmuir turbulence are dramatically influenced by the upper mixed layer depth.To explore the influence of the upper mixed layer depth on Langmuir turbulence under the condition of the wind and wave equilibrium,the changes of Langmuir turbulence characteristics with the idealized variation of the upper mixed layer depth from very shallow(h=5 m)to deep enough(h=40 m)are studied using a non-hydrostatic large eddy simulation model.The simulation results show that there is a direct entrainment depth induced by Langmuir turbulence(h_(LT))within the thermocline.The normalized depthaveraged vertical velocity variance is smaller and larger than the downwind velocity variance for the ratio of the upper mixed layer to a direct entrainment depth induced by Langmuir turbulence h/h_(LT)<1 and h/h_(LT)>1,respectively,indicating that turbulence characteristics have the essential change(i.e.,depth-averaged vertical velocity variance(DAVV)DADV for Langmuir turbulence)between h/h_(LT)<1 and h/h_(LT)>1.The rate of change of the normalized depth-averaged low-order statistics for h/h_(LT)<1 is much larger than that for h/h_(LT)>1.The reason is that the downward pressure perturbation induced by Langmuir cells is strongly inhibited by the upward reactive force of the strong stratified thermocline for h/h_(LT)<1 and the eff ect of upward reactive force on the downward pressure perturbation becomes weak for h/h_(LT)>1.Hence,the upper mixed layer depth has significant influences on Langmuir turbulence characteristics.展开更多
In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM)...In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors..展开更多
To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cyli...To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cylindrical shell covered with this skin for the case of turbulence excitation is established based on the shell theories of Donnell.The model is solved with the modal superposition method to investigate the effects of the structural parameters of micro floating raft elements on the performance of reducing vibration and sound radiation of the cylindrical shell of this skin.The results indicate that increasing the stiffness ratio,damping ratio,mass ratio,or decreasing the interval betweenmicro floating raft elements can improve the vibration and sound radiation reduction performance of this skin over the frequency range 0∼2000 Hz.Moreover,the mean quadratic velocity level and sound radiation power level of the finite cylindrical shell with this skin can be reduced by 12.00 dB and 9.65 dB respectively compared to the finite cylindrical shell with homogeneous viscoelastic coating in the frequency range from0∼2000Hz,implying a favorable performance of this skin for reducing the vibration and sound radiation of cylindrical shells.展开更多
Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were ...Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were used to better understand the differentiating characteristics of turbulence regimes and vertical turbulence structure of urban the NBL.As for heights above the urban canopy layer(UCL),the relationship between turbulence velocity scale(VTKE)and wind speed(V)was consistent with the“HOckey-Stick”(HOST)theory proposed for a relatively flat area.Four regimes have been identified according to urban nocturnal stable boundary layer.Regime 1 occurs where local shear plays a leading role for weak turbulence under the constraint that the wind speed V<VT(threshold wind speed).Regime 2 is determined by the existence of strong turbulence that occurs when V>VT and is mainly driven by bulk shear.Regime 3 is identified by the existence of moderate turbulence when upside-down turbulence sporadic bursts occur in the presence of otherwise weak turbulence.Regime 4 is identified as buoyancy turbulence,when V>VT,and the turbulence regime is affected by a combination of local wind shear,bulk shear and buoyancy turbulence.The turbulence activities demonstrated a weak thermal stratification dependency in regime 1,for which within the UCL,the turbulence intensity was strongly affected by local wind shear when V<VT.This study further showed typical examples of different stable boundary layers and the variations between turbulence regimes by analyzing the evolution of wind vectors.Partly because of the influence of large-scale motions,the power spectral density of vertical velocity for upsidedown structure showed an increase at low frequencies.The upside-down structures were also characterized by the highest frequency of the stable stratifications in the higher layer.展开更多
The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we investigate the influence of atmospheric turbulence on the rotatio...The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we investigate the influence of atmospheric turbulence on the rotational Doppler effect.First,we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition.It is found that the rotational Doppler signal frequency spectrum will be broadened,and the bandwidth is related to the turbulence intensity.In addition,as the propagation distance increases,the bandwidth also increases.And when C_(n)^(2)≤5×10^(-15)m^(-2/3)and 2z≤2 km,the rotational Doppler signal frequency spectrum width d and the spiral spectrum width d_(0)satisfy the relationship d=2d_(0-1).Finally,we analyze the influence of mode crosstalk on the rotational Doppler effect,and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about 2l·Ω/2π.This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency.展开更多
We investigate a novel form of non-uniform living turbulence at an extremely low Reynolds number using a bacterial suspension confined within a sessile droplet. This turbulence differs from homogeneous active turbulen...We investigate a novel form of non-uniform living turbulence at an extremely low Reynolds number using a bacterial suspension confined within a sessile droplet. This turbulence differs from homogeneous active turbulences in two or threedimensional geometries. The heterogeneity arises from a gradient of bacterial activity due to oxygen depletion along the droplet’s radial direction. Motile bacteria inject energy at individual scales, resulting in local anisotropic energy fluctuations that collectively give rise to isotropic turbulence. We find that the total kinetic energy and enstrophy decrease as distance from the drop contact line increases, due to the weakening of bacterial activity caused by oxygen depletion. While the balance between kinetic energy and enstrophy establishes a characteristic vortex scale depending on the contact angle of the sessile drop. The energy spectrum exhibits diverse scaling behaviors at large wavenumber, ranging from k-1/5to k-1,depending on the geometric confinement. Our findings demonstrate how spatial regulation of turbulence can be achieved by tuning the activity of driving units, offering insights into the dynamic behavior of living systems and the potential for controlling turbulence through gradient confinements.展开更多
This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time ...This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time and length and their probability density functions(PDFs),was investigated.The results demonstrated that turbulence intensity was relatively greater on a rough bed in the roller length,whereas further downstream,the decay rate was higher.In addition,the relationship between turbulence intensity and dimensionless bubble count rate reflected an increase in turbulence intensity associated with the number of entrained particles.Triple decomposition analysis(TDA)was performed to determine the contributions of slow and fast turbulent components.The TDA results indicated that,regardless of bed type and inflow conditions,the sum of the band-pass(T'_(u))and high-pass(T″_(u))filtered turbulence intensities was equal to the turbulence intensity of the raw signal data(T_(u)).T″_(u) highlighted a higher turbulence intensity and larger vorticities on the rough bed for an identical inflow Froude number.Additional TDA results were presented in terms of the interfacial velocity,auto-and cross-correlation time scales,and longitudinal advection length scale,with the effects of low-and high-frequency signal components on each highlighted parameter.The analysis of the air chord time indicated an increase in the proportion of small bubbles moving downstream.The second part of this research focused on the basic properties of particle grouping and clustering.展开更多
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)+2 种基金JST Through the Establishment of University Fellowships Towards the Creation of Science Technology Innovation(JPMJFS2115)the National Natural Science Foundation of China(52078382)the State Key Laboratory of Disaster Reduction in Civil Engineering(CE19-A-01)。
文摘Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.
基金supported by the Meteorological Soft Science Project(Grant No.2023ZZXM29)the Natural Science Fund Project of Tianjin,China(Grant No.21JCYBJC00740)the Key Research and Development-Social Development Program of Jiangsu Province,China(Grant No.BE2021685).
文摘As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11604058)Guangxi Natural Science Foundation (Grant Nos. 2020GXNSFAA297041 and 2023JJA110112)+1 种基金Innovation Project of Guangxi Graduate Education (Grant No. YCSW2023083)Sichuan Science and Technology Program (Grant No. 2023NSFSC0460)。
文摘Turbulence in complex environments such as the atmosphere and biological media has always been a great challenge to the application of beam propagation in optical communication, optical trapping and manipulation. To overcome this challenge, this study comprehensively investigates the robust propagation of traditional Gaussian and autofocusing beams in turbulent environments. In order to select stable beams that exhibit high intensity and high field gradient at the focal position in complex environments, Kolmogorov turbulence theory is used to simulate the propagation of beams in atmospheric turbulence based on the multi-phase screen method. We systematically analyze the intensity fluctuations, the variation of the coherence factor and the change in the scintillation index with propagation distance. The analysis reveals that the intensity fluctuations of autofocusing beams are significantly smaller than those of Gaussian beams, and the coherence of autofocusing beams is better than that of Gaussian beams under turbulence. Moreover, autofocusing beams exhibit less oscillation than Gaussian beams, indicating that autofocusing beams propagate in complex environments with less distortion and intensity fluctuation. Overall, this work clearly demonstrates that autofocusing beams exhibit higher stability in propagation compared with Gaussian beams, showing great promise for applications such as optical trapping and manipulation in complex environments.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2022YFE03030001,2022YFE03020004 and 2022YFE 03050003)National Natural Science Foundation of China(Nos.12275310,11975275,12175277 and 11975271)+2 种基金the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2021-01)the Collaborative Innovation Program of Hefei Science Center,Chinese Academy of Sciences(No.2021HSC-CIP019)the Users with Excellence Program of Hefei Science Center,Chinese Academy of Sciences(Nos.2021HSC-UE014 and 2021HSCUE012)。
文摘A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.
基金This work was supported by the Science and Technology Innovation Training Program of Nanjing University of Posts and Telecommunications(Grant No.CXXZD2023080)the National Natural Science Foundation of China(Grant Nos.61871234 and 62001249)+1 种基金the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY222133)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams.
基金partially supported by the National Key R&D Program of China(Nos.2019YFE03030002 and 2022YFE03030001)National Natural Science Foundation of China(Nos.12175186 and 12175055)the Natural Science Foundation of Sichuan Province(Nos.2022NSFSC1820 and 2023NSFSC1289)。
文摘This paper reports an improved time-delay estimation(TDE)technique for the derivation of turbulence structures based on gas-puff imaging data.The improved TDE technique,integrating an inverse timing search and hierarchical strategy,offers superior accuracy in calculating turbulent velocity field maps and analyzing blob dynamics,which has the power to obtain the radial profiles of equilibrium poloidal velocity,blob size and its radial velocity,even the fluctuation analysis,such as geodesic acoustic modes and quasi-coherent mode,etc.This improved technique could provide important 2D information for the study of edge turbulence and blob dynamics,advancing the understanding of edge turbulence physics in fusion plasmas.
基金supported by National Natural Science Foundation of China(Nos.U1967206 and 12275071)National Key R&D Program of China(No.2017YFE0301201)。
文摘The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons.The simulations use an extended fluid code(ExFC)based on a four-field gyro-Landau-fluid(GLF)model.The multispecies form of the normalized GLF equations is presented,which guarantees the self-consistent evolution of both bulk ions and impurities.With parametric profiles of the cyclone base case,well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles.For a fixed temperature profile,it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities,which is contrary to the linear and quasilinear predictions.The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process,indicating that the destabilization of the outwardly peaked impurity profile is a transient state response.Furthermore,the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient,which is likely to be dominated by linear effects.These results suggest that the improvement in plasma confinement could be attributed to the impurities,most likely through adjusting both heat diffusivity and the critical temperature gradient.
基金supported by the National Key R&D Program of China(Grant No.2022YFB3303500).
文摘The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.
基金The National Key Research and Development Program of China under contract No.2022YFC3105002the National Natural Science Foundation of China under contract No.42176020the project from the Key Laboratory of Marine Environmental Information Technology,Ministry of Natural Resources,under contract No.2023GFW-1047.
文摘The Stokes production coefficient(E_(6))constitutes a critical parameter within the Mellor-Yamada type(MY-type)Langmuir turbulence(LT)parameterization schemes,significantly affecting the simulation of turbulent kinetic energy,turbulent length scale,and vertical diffusivity coefficient for turbulent kinetic energy in the upper ocean.However,the accurate determination of its value remains a pressing scientific challenge.This study adopted an innovative approach by leveraging deep learning technology to address this challenge of inferring the E_(6).Through the integration of the information of the turbulent length scale equation into a physical-informed neural network(PINN),we achieved an accurate and physically meaningful inference of E_(6).Multiple cases were examined to assess the feasibility of PINN in this task,revealing that under optimal settings,the average mean squared error of the E_(6) inference was only 0.01,attesting to the effectiveness of PINN.The optimal hyperparameter combination was identified using the Tanh activation function,along with a spatiotemporal sampling interval of 1 s and 0.1 m.This resulted in a substantial reduction in the average bias of the E_(6) inference,ranging from O(10^(1))to O(10^(2))times compared with other combinations.This study underscores the potential application of PINN in intricate marine environments,offering a novel and efficient method for optimizing MY-type LT parameterization schemes.
基金financially supported by the National Key Research and Development Program of China(2023YFC3208501)the National Natural Science Foundation of China(Grant Nos.U2340225,51979172)+2 种基金the Nanjing Hydraulic Research Institute Special Fund for Basic Scientific Research of Central Public Research Institutes(Y223002,Y220013)the CRSRI Open Research Program(Grant No.CKWV20221007/KY)the Post-Three Gorges Sediment Research Project of MWR(ProjectⅢ:Impact and Countermeasures of the Three Gorges Project on the Stability of the Shoal and Channel and Habitat of Yangtze River Estuary)。
文摘A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the condition of various regular wave heights and current velocities,with the constant water depth being 0.60 m to create the desired submerged scenarios.Results show that the vegetation-induced wave dissipation is enhanced with the increasing incident wave height.A larger velocity magnititude leads to a greater wave height attenuation for both following and opposing current conditions.Moreover,there is a strong positive linear correlation between the damping coefficientβand the relative wave height H_(0)/h,especially for pure wave conditions.For the velocity profile,the distributions of U_(min)and U_(max)show different patterns under combined wave and current.The time-averaged turbulent kinetic energy(TKE)vary little under pure wave and U_(c)=±0.05 m/s conditions.With the increase of flow velocity amplitude,the time-averaged TKE shows a particularly pronounced increase trend at the top of the canopy.The vegetation drag coefficients are obtained by a calibration approach.The empirical relations of drag coefficient with Reynolds and Keulegane-Carpenter numbers are proposed to further understand the wave-current-vegetation interaction mechanism.
基金financially supported by the National Natural Science Foundation of China (12373092, 12273027, 11733007, 11873010, 12133010)the Nebula Talents Program of the National Astronomical Observatories, CAS+1 种基金the Sichuan Youth Science and Technology Innovation Research Team (21CXTD0038)the Innovation Team F unds of China West Normal University (KCXTD2022-6).
文摘Adaptive optics systems are the most powerful tools to counteract the image blurring caused by atmospheric turbulence,allowing ground-based telescopes to capture high-resolution images.A critical parameter influencing adaptive optics system performance is the atmospheric refractive index structure constant,C_(n)^(2),which characterizes the intensity of atmospheric optical turbulence as a function of altitude.Given its simplicity,the lunar scintillometer is the preferred method for detecting atmospheric turbulence in challenging environments like Dome A in Antarctica,where sites are still in the developmental stages and local environmental conditions are extremely harsh.However,optimizing the performance of such instruments requires carefully determining the baseline configuration of photon sensors according to each site's specific optical turbulence profile characteristics.This study uses a Monte Carlo method to identify the optimal configuration for the KunLun Turbulence Profiler(KLTP),an instrument comparable to the lunar scintillometer,developed for use at Dome A.Simulations conducted using the obtained optimal baseline configuration recovered three different model optical turbulence profiles,demonstrating the effectiveness of our method in obtaining an optimal baseline configuration.Our approach can be easily applied to baseline design for similar turbulence profilers at other sites.
文摘This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth.
基金supported by the Natural Science Foundation of Zhejiang Province(Grant No.LHZ21E090003)the National Nature Science Foundation of China(Grant No.52171279)+1 种基金Zhoushan Science&Technology Project(Grant No.2021C21002)supported by CNPq(Conselho Nacional de Desenvolvimento Científico e Tecnológico,Grant No.301474/2017-6).
文摘In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically.
基金Supported by the National Key Research and Development Program of China(No.2018YFC1405701)the National Natural Science Foundation of China(Nos.92158204,41506001,42076026,41876017,42176027)+2 种基金the Project supported by Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0304)the Open Research Project Programme of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(No.SKL-IoTSC(UM)-2021-2023/ORPF/A20/2022)the State Key Laboratory of Tropical Oceanography(No.LTOZZ2101)。
文摘The upper mixed layer depth(h)has a significant seasonal variation in the real ocean and the low-order statistics of Langmuir turbulence are dramatically influenced by the upper mixed layer depth.To explore the influence of the upper mixed layer depth on Langmuir turbulence under the condition of the wind and wave equilibrium,the changes of Langmuir turbulence characteristics with the idealized variation of the upper mixed layer depth from very shallow(h=5 m)to deep enough(h=40 m)are studied using a non-hydrostatic large eddy simulation model.The simulation results show that there is a direct entrainment depth induced by Langmuir turbulence(h_(LT))within the thermocline.The normalized depthaveraged vertical velocity variance is smaller and larger than the downwind velocity variance for the ratio of the upper mixed layer to a direct entrainment depth induced by Langmuir turbulence h/h_(LT)<1 and h/h_(LT)>1,respectively,indicating that turbulence characteristics have the essential change(i.e.,depth-averaged vertical velocity variance(DAVV)DADV for Langmuir turbulence)between h/h_(LT)<1 and h/h_(LT)>1.The rate of change of the normalized depth-averaged low-order statistics for h/h_(LT)<1 is much larger than that for h/h_(LT)>1.The reason is that the downward pressure perturbation induced by Langmuir cells is strongly inhibited by the upward reactive force of the strong stratified thermocline for h/h_(LT)<1 and the eff ect of upward reactive force on the downward pressure perturbation becomes weak for h/h_(LT)>1.Hence,the upper mixed layer depth has significant influences on Langmuir turbulence characteristics.
基金supported by the National Natural Science Foundation of China(22078009)National Key Research and Development Program of China(2021YFC3001102,2021YFC3001100)。
文摘In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors..
基金supported by the National Natural Science Foundation of China(Grant Nos.51775123,52075111)the Fundamental Research Funds for the Central Universities(Grant No.3072021CF0702).
文摘To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cylindrical shell covered with this skin for the case of turbulence excitation is established based on the shell theories of Donnell.The model is solved with the modal superposition method to investigate the effects of the structural parameters of micro floating raft elements on the performance of reducing vibration and sound radiation of the cylindrical shell of this skin.The results indicate that increasing the stiffness ratio,damping ratio,mass ratio,or decreasing the interval betweenmicro floating raft elements can improve the vibration and sound radiation reduction performance of this skin over the frequency range 0∼2000 Hz.Moreover,the mean quadratic velocity level and sound radiation power level of the finite cylindrical shell with this skin can be reduced by 12.00 dB and 9.65 dB respectively compared to the finite cylindrical shell with homogeneous viscoelastic coating in the frequency range from0∼2000Hz,implying a favorable performance of this skin for reducing the vibration and sound radiation of cylindrical shells.
基金supported by the National Natural Science Foundation of China (Grant No. 42105093 and 41975018)the China Postdoctoral Science Foundation (Grant No. 2020M670420)the Special Research Assistant Project。
文摘Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were used to better understand the differentiating characteristics of turbulence regimes and vertical turbulence structure of urban the NBL.As for heights above the urban canopy layer(UCL),the relationship between turbulence velocity scale(VTKE)and wind speed(V)was consistent with the“HOckey-Stick”(HOST)theory proposed for a relatively flat area.Four regimes have been identified according to urban nocturnal stable boundary layer.Regime 1 occurs where local shear plays a leading role for weak turbulence under the constraint that the wind speed V<VT(threshold wind speed).Regime 2 is determined by the existence of strong turbulence that occurs when V>VT and is mainly driven by bulk shear.Regime 3 is identified by the existence of moderate turbulence when upside-down turbulence sporadic bursts occur in the presence of otherwise weak turbulence.Regime 4 is identified as buoyancy turbulence,when V>VT,and the turbulence regime is affected by a combination of local wind shear,bulk shear and buoyancy turbulence.The turbulence activities demonstrated a weak thermal stratification dependency in regime 1,for which within the UCL,the turbulence intensity was strongly affected by local wind shear when V<VT.This study further showed typical examples of different stable boundary layers and the variations between turbulence regimes by analyzing the evolution of wind vectors.Partly because of the influence of large-scale motions,the power spectral density of vertical velocity for upsidedown structure showed an increase at low frequencies.The upside-down structures were also characterized by the highest frequency of the stable stratifications in the higher layer.
基金Project supported by the Research Plan Project of the National University of Defense Technology(Grant No.ZK18-0102)the National Natural Science Foundation of China(Grant No.61871389)+1 种基金the State Key Laboratory of Pulsed Power Laser Technology(Grant No.KY21C604)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant Nos.CX20220007 and CX20230024)。
文摘The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we investigate the influence of atmospheric turbulence on the rotational Doppler effect.First,we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition.It is found that the rotational Doppler signal frequency spectrum will be broadened,and the bandwidth is related to the turbulence intensity.In addition,as the propagation distance increases,the bandwidth also increases.And when C_(n)^(2)≤5×10^(-15)m^(-2/3)and 2z≤2 km,the rotational Doppler signal frequency spectrum width d and the spiral spectrum width d_(0)satisfy the relationship d=2d_(0-1).Finally,we analyze the influence of mode crosstalk on the rotational Doppler effect,and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about 2l·Ω/2π.This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12174306 and 12004308)the Natural Science Basic Research Program of Shaanxi (Grant No. 2023-JC-JQ-02)。
文摘We investigate a novel form of non-uniform living turbulence at an extremely low Reynolds number using a bacterial suspension confined within a sessile droplet. This turbulence differs from homogeneous active turbulences in two or threedimensional geometries. The heterogeneity arises from a gradient of bacterial activity due to oxygen depletion along the droplet’s radial direction. Motile bacteria inject energy at individual scales, resulting in local anisotropic energy fluctuations that collectively give rise to isotropic turbulence. We find that the total kinetic energy and enstrophy decrease as distance from the drop contact line increases, due to the weakening of bacterial activity caused by oxygen depletion. While the balance between kinetic energy and enstrophy establishes a characteristic vortex scale depending on the contact angle of the sessile drop. The energy spectrum exhibits diverse scaling behaviors at large wavenumber, ranging from k-1/5to k-1,depending on the geometric confinement. Our findings demonstrate how spatial regulation of turbulence can be achieved by tuning the activity of driving units, offering insights into the dynamic behavior of living systems and the potential for controlling turbulence through gradient confinements.
文摘This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time and length and their probability density functions(PDFs),was investigated.The results demonstrated that turbulence intensity was relatively greater on a rough bed in the roller length,whereas further downstream,the decay rate was higher.In addition,the relationship between turbulence intensity and dimensionless bubble count rate reflected an increase in turbulence intensity associated with the number of entrained particles.Triple decomposition analysis(TDA)was performed to determine the contributions of slow and fast turbulent components.The TDA results indicated that,regardless of bed type and inflow conditions,the sum of the band-pass(T'_(u))and high-pass(T″_(u))filtered turbulence intensities was equal to the turbulence intensity of the raw signal data(T_(u)).T″_(u) highlighted a higher turbulence intensity and larger vorticities on the rough bed for an identical inflow Froude number.Additional TDA results were presented in terms of the interfacial velocity,auto-and cross-correlation time scales,and longitudinal advection length scale,with the effects of low-and high-frequency signal components on each highlighted parameter.The analysis of the air chord time indicated an increase in the proportion of small bubbles moving downstream.The second part of this research focused on the basic properties of particle grouping and clustering.