期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A dual timescale model for micro-mixing and its application in LES-TPDF simulations of turbulent nonpremixed flames 被引量:10
1
作者 Fang WANG Rui LIU +2 位作者 Li DOU Denghuan LIU Jie JIN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第4期875-887,共13页
The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transp... The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transported Probability Density Function(TPDF) turbulence combustion model is promising in engineering applications. In flame region, the impact of chemical reaction should be considered in TPDF molecular mixing model. Based on pioneer research, three new TPDF turbulence-chemistry dual time scale molecular mixing models were proposed tentatively by adding the chemistry time scale in molecular mixing model for nonpremixed flame. The Aero-Engine Combustor Simulation Code(AECSC) which is based on LES-TPDF method was combined with the three new models. Then the Sandia laboratory's methane-air jet flames: Flame D and Flame E were simulated. Transient simulation results show that all the three new models can predict the instantaneous combustion flow pattern of the jet flames. Furthermore,the average scalar statistical results were compared with the experimental data. The simulation result of the new TPDF arithmetic mean modification model is the closest to the experimental data:the average error in Flame D is 7.6% and 6.6% in Flame E. The extinction and re-ignition phenomena of the jet flames especially Flame E were captured. The turbulence time scale and the chemistry time scale are in different order in the whole flow field. The dual time scale TPDF combustion model has ability to deal with both the turbulence effect and the chemistry reaction effect, as well as their interaction more accurately for nonpremixed flames. 展开更多
关键词 Dual time scale model Large eddy simulation Sandia methane-air jet flame TPDF molecular mixing model Turbulence combustion model
原文传递
Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach 被引量:7
2
作者 Cao Changmin Ye Taohong Zhao Majie 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1316-1327,共12页
Large eddy simulations (LES) have been performed to investigate the flow and combustion fields in the scramjet of the German Aerospace Center (DLR). Turbulent combustion is mod- eled by the tabulated thermo-chemis... Large eddy simulations (LES) have been performed to investigate the flow and combustion fields in the scramjet of the German Aerospace Center (DLR). Turbulent combustion is mod- eled by the tabulated thermo-chemistry approach in combination with the presumed probability density function (PDF). A/3-function is used to model the distribution of the mixture fraction, while two different PDFs, g-function (Model I) and //-function (Model II), are applied to model the reaction progress. Temperature is obtained by solving filtered energy transport equation and the reaction rate of the progress variable is rescaled by pressure to consider the effects of compressibil- ity. The adaptive mesh refinement (AMR) technique is used to properly capture shock waves, boundary layers, shear layers and flame structures. Statistical results of temperature and velocity predicted by Model II show better accuracy than that predicted by Model I. The results of scatter points and mixture fraction-conditional variables indicate the significant differences between Model I and Model II. It is concluded that second moment information in the presumed PDF of the reaction progress is very important in the simulation of supersonic combustion. It is also found that an unstable flame with extinction and ignition develops in the shear layers of bluff body and a fuel- rich partially premixed flame stabilizes in the central recirculation bubble. 展开更多
关键词 Large eddy simulation(LES) Presumed probability densityfunction (PDF) Scram jet Tabulated thermo-chemistry turbulent combustion model
原文传递
Effect of turbulence on NO formation in swirling combustion 被引量:2
3
作者 Wang Fang Xie Xiang +1 位作者 Jiang Qi Zhou Lixing 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第4期797-804,共8页
Turbulence affects both combustion and NO formation. Fluctuation correlations are ideally used for quantitative analysis. From the instantaneous chemical reaction rate expression,ignoring the third-order correlation t... Turbulence affects both combustion and NO formation. Fluctuation correlations are ideally used for quantitative analysis. From the instantaneous chemical reaction rate expression,ignoring the third-order correlation terms, the averaged reaction rate will have four terms, including the term of averaged-variable product, a concentration fluctuation correlation term, and temperature-concentration fluctuation correlation term. If the reaction-rate coefficient is denoted as K, the temperature fluctuation would be included in the K fluctuation. In order to quantitatively study the effect of turbulence on NO formation in methane-air swirling combustion, various turbulencechemistry models are tested. The magnitudes of various correlations and their effects on the time-averaged reaction rate are calculated and analyzed, and the simulation results are compared with the experimental measurement data. The results show that among various correlation moments, the correlation between the reaction-rate coefficient K fluctuation with the concentration fluctuation is most important and is a strong nonlinear term. 展开更多
关键词 NO formation Numerical simulation Reaction-rate coefficient Second-order moment model turbulent combustion model
原文传递
Numerical simulations of turbulent flows in aeroramp injector/gas-pilot flame scramjet 被引量:2
4
作者 Bing CHEN Xu XU +1 位作者 Baoxi WEI Yan ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1373-1390,共18页
To uncover the internal flow characteristics in an ethylene-fueled aeroramp injector/gaspilot(ARI/G-P)flame scramjet,a Reynolds-averaged Navier-Stokes(RANS)solver is constructed under a hybrid polyhedral cell fini... To uncover the internal flow characteristics in an ethylene-fueled aeroramp injector/gaspilot(ARI/G-P)flame scramjet,a Reynolds-averaged Navier-Stokes(RANS)solver is constructed under a hybrid polyhedral cell finite volume frame.The shear stress transport(SST)k-x model is used to predict the turbulence,while the Overmann’s compressibility corrected laminar flamelet model is adopted to simulate the turbulent combustion.Nonreactive computations for Case 1(G-P jet on),Case 2(ARI jets on),and Case 3(both ARI and G-P jets on)were conducted to analyze the mixing mechanism,while reactive Cases 4–7 at equivalent ratios of 0.380,0.278,0.199 and0.167 respectively were calculated to investigate the flame structure and combustion modes.The numerical results are compared well to those of the experiments.It is shown that the G-P jet plays significant role in both the fuel/air mixing and flame holding processes;the combustion for the four reactive cases takes place intensively in the regions downstream of the ARI/G-P unit;Cases 4 and 5are under subsonic combustion mode,whereas Cases 6 and 7 are mode transition critical and supersonic combustion cases,respectively;the mode transition equivalent ratio is approximately 0.20. 展开更多
关键词 combustion mode Laminar flamelet model Menter's SST k-ω model Scramjet turbulent combustion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部