Intelligent vehicle needs the turn light information of front vehicles to make decisions in autonomous navigation. A recognition algorithm was designed to get information of turn light. Approximated center segmentatio...Intelligent vehicle needs the turn light information of front vehicles to make decisions in autonomous navigation. A recognition algorithm was designed to get information of turn light. Approximated center segmentation method was designed to divide the front vehicle image into two parts by using geometry information. The number of remained pixels of vehicle image which was filtered by the morphologic feaatres was got by adaptive threshold method, and it was applied to recognizing the lights flashing. The experimental results show that the algorithm can not only distinguish the two turn lights of vehicle but also recognize the information of them. The algorithm is quiet effective, robust and satisfactory in real-time performance.展开更多
A new 4 H–SiC light triggered thyristor(LTT) with 7-shaped thin n-base doping profile is proposed and simulated using a two-dimensional numerical method. In this new structure, the bottom region of the thin n-base ...A new 4 H–SiC light triggered thyristor(LTT) with 7-shaped thin n-base doping profile is proposed and simulated using a two-dimensional numerical method. In this new structure, the bottom region of the thin n-base has a graded doping profile to induce an accelerating electric field and compensate for the shortcoming of the double-layer thin n-base structure in transmitting injected holes. In addition, the accelerating electric field can also speed up the transmission of photongenerated carriers during light triggering. As a result, the current gain of the top pnp transistor of the SiC LTT is further increased. According to the TCAD simulations, the turn-on delay time of the SiC LTT decreases by about 91.5% compared with that of previous double-layer thin n-base SiC LTT. The minimum turn-on delay time of the SiC LTT is only 828 ns,when triggered by 100 mW/cm^2 ultraviolet light. Meanwhile, there is only a slight degradation in the forward blocking characteristic.展开更多
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada...Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.展开更多
A homemade Static Light scattering studies has been used to determine angle resolved scattered intensity for different polarization states of the incident laser light. Classical light scattering set ups are being used...A homemade Static Light scattering studies has been used to determine angle resolved scattered intensity for different polarization states of the incident laser light. Classical light scattering set ups are being used to study morphological aspects of scatterers using simple set ups using low power lasers. Red blood cells form rather interesting as well as a challenging system for scattering experiments. The scattering spectrometer consists of a scattering arm, a scattering turn table and collimating arm. Along with polarizers integrated in the collimating arm as well as scattering arms ensures collection of scattered flux with the required polarization state. This technique is being developed for its in vitro studies using fresh red blood cells. A brief review of the theoretical models used for scattering from Red Blood Cells (RBC) has been discussed in the paper. Scattering pattern (scattering plots) as well as polar plots of scattered flux have been determined for different polarization state of the incident light. Insight into the orientation of major axis of particles can be inferred from the polar plots.展开更多
基金Projects(90820302,60805027)supported by the National Natural Science Foundation of ChinaProject(200805330005)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(20010FJ4030)supported by the Academician Foundation of Hunan Province,China
文摘Intelligent vehicle needs the turn light information of front vehicles to make decisions in autonomous navigation. A recognition algorithm was designed to get information of turn light. Approximated center segmentation method was designed to divide the front vehicle image into two parts by using geometry information. The number of remained pixels of vehicle image which was filtered by the morphologic feaatres was got by adaptive threshold method, and it was applied to recognizing the lights flashing. The experimental results show that the algorithm can not only distinguish the two turn lights of vehicle but also recognize the information of them. The algorithm is quiet effective, robust and satisfactory in real-time performance.
基金Project supported by the National Natural Science Foundation of China(Grant No.51677149)
文摘A new 4 H–SiC light triggered thyristor(LTT) with 7-shaped thin n-base doping profile is proposed and simulated using a two-dimensional numerical method. In this new structure, the bottom region of the thin n-base has a graded doping profile to induce an accelerating electric field and compensate for the shortcoming of the double-layer thin n-base structure in transmitting injected holes. In addition, the accelerating electric field can also speed up the transmission of photongenerated carriers during light triggering. As a result, the current gain of the top pnp transistor of the SiC LTT is further increased. According to the TCAD simulations, the turn-on delay time of the SiC LTT decreases by about 91.5% compared with that of previous double-layer thin n-base SiC LTT. The minimum turn-on delay time of the SiC LTT is only 828 ns,when triggered by 100 mW/cm^2 ultraviolet light. Meanwhile, there is only a slight degradation in the forward blocking characteristic.
文摘Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.
文摘A homemade Static Light scattering studies has been used to determine angle resolved scattered intensity for different polarization states of the incident laser light. Classical light scattering set ups are being used to study morphological aspects of scatterers using simple set ups using low power lasers. Red blood cells form rather interesting as well as a challenging system for scattering experiments. The scattering spectrometer consists of a scattering arm, a scattering turn table and collimating arm. Along with polarizers integrated in the collimating arm as well as scattering arms ensures collection of scattered flux with the required polarization state. This technique is being developed for its in vitro studies using fresh red blood cells. A brief review of the theoretical models used for scattering from Red Blood Cells (RBC) has been discussed in the paper. Scattering pattern (scattering plots) as well as polar plots of scattered flux have been determined for different polarization state of the incident light. Insight into the orientation of major axis of particles can be inferred from the polar plots.