The current research of suspension performance evaluation is mixed in the evaluation of vehicle handling and ride comfort. However, it is lack of a direct and independent evaluation method for suspension performance. ...The current research of suspension performance evaluation is mixed in the evaluation of vehicle handling and ride comfort. However, it is lack of a direct and independent evaluation method for suspension performance. In this paper, a novel wheel turn center method is proposed to evaluate the suspension performance. This method is based on the concept and application of wheel turn center (WTC) and sprung mass turn center (SPTC). The vehicle body and each wheel are regarded to be independent rigid bodies and have their own turn centers which reflect respective steering motions and responses. Since the suspension is the link between vehicle body and wheels, the consistence between the sprung mass turn center and the wheel turn center reflects the effect and performance of the suspension system. Firstly, the concept and appropriate calculation method of WTC and SPTC are developed. Then the degree of inconsistence between WTC and SPTC and the time that they achieve consistence, when the vehicle experiences from transient steering to steady steering state, are proposed to evaluate suspension performance. The suspension evaluation tests are conducted under different vehicle velocities and lateral accelerations by using CarSim software. The simulation results show that the inconsistence of steering motion between vehicle body and wheels are mainly at high speeds and low lateral accelerations. Finally, based on the proposed evaluation indexes, the influences of different suspension characteristic parameters on suspension performance and their matches to improve steering coordination are discussed. The proposed wheel turn center method provides a guidance and potential application for suspension evaluation and optimization.展开更多
In the presence of collective flow a new model potential describing the interaction of the hard jet with scattering centers is derived based on the static color-screened Yukawa potential.The flow effect on jet quenchi...In the presence of collective flow a new model potential describing the interaction of the hard jet with scattering centers is derived based on the static color-screened Yukawa potential.The flow effect on jet quenching with detailed balance is investigated in pQCD.It turns out,considering the collective flow with velocity vzalong the jet direction,the collective flow decreases the LPM destructive interference comparing to that in the static medium.The gluon absorption plays a more important role in the moving medium.The collective flow increases the energy gain from gluon absorption,however,decreases the energy loss from gluon radiation,which is(1-vz)times as that in the static medium to the first order of opacity.In the presence of collective flow,the second order in opacity correction is relatively small compared to the first order.So that the total effective energy loss is decreased.The flow dependence of the energy loss will affect the suppression of high pThadron spectrum and anisotropy parameter v2in high-energy heavy-ion collisions.展开更多
基金Supported by Changjiang Scholar and Innovative Research Team Plan of China(Grant No.IRT0626)
文摘The current research of suspension performance evaluation is mixed in the evaluation of vehicle handling and ride comfort. However, it is lack of a direct and independent evaluation method for suspension performance. In this paper, a novel wheel turn center method is proposed to evaluate the suspension performance. This method is based on the concept and application of wheel turn center (WTC) and sprung mass turn center (SPTC). The vehicle body and each wheel are regarded to be independent rigid bodies and have their own turn centers which reflect respective steering motions and responses. Since the suspension is the link between vehicle body and wheels, the consistence between the sprung mass turn center and the wheel turn center reflects the effect and performance of the suspension system. Firstly, the concept and appropriate calculation method of WTC and SPTC are developed. Then the degree of inconsistence between WTC and SPTC and the time that they achieve consistence, when the vehicle experiences from transient steering to steady steering state, are proposed to evaluate suspension performance. The suspension evaluation tests are conducted under different vehicle velocities and lateral accelerations by using CarSim software. The simulation results show that the inconsistence of steering motion between vehicle body and wheels are mainly at high speeds and low lateral accelerations. Finally, based on the proposed evaluation indexes, the influences of different suspension characteristic parameters on suspension performance and their matches to improve steering coordination are discussed. The proposed wheel turn center method provides a guidance and potential application for suspension evaluation and optimization.
基金supported by the National Natural Science Foundation of China (Grant Nos.11205024,11221504 and 10825523)the Major State Basic Research Development Program in China (Grant No.2014CB845404)the Ministry of Education of China (the Doctoral Grant No.20120041120043)
文摘In the presence of collective flow a new model potential describing the interaction of the hard jet with scattering centers is derived based on the static color-screened Yukawa potential.The flow effect on jet quenching with detailed balance is investigated in pQCD.It turns out,considering the collective flow with velocity vzalong the jet direction,the collective flow decreases the LPM destructive interference comparing to that in the static medium.The gluon absorption plays a more important role in the moving medium.The collective flow increases the energy gain from gluon absorption,however,decreases the energy loss from gluon radiation,which is(1-vz)times as that in the static medium to the first order of opacity.In the presence of collective flow,the second order in opacity correction is relatively small compared to the first order.So that the total effective energy loss is decreased.The flow dependence of the energy loss will affect the suppression of high pThadron spectrum and anisotropy parameter v2in high-energy heavy-ion collisions.