This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to c...This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to control buck switch mode converter.The idea behind this strategy is to suppress chattering and maintain robustness and finite time convergence properties of the output voltage error to the equilibrium point under the load variations and parametric uncertainties.In addition,the influence of the twisting algorithm on the performance of closed-loop system is investigated and compared with other algorithms of first order sliding mode control such as adaptive sliding mode control(ASMC),nonsingular terminal sliding mode control(NTSMC).In comparative evaluation,the transient response of the output voltage with the step change in the load and the start-up response of the output voltage with the step change in the input voltage of buck converter were compared.Experimental results were obtained from a hardware setup constructed in laboratory.Finally,for all of the surveyed control methods,the theoretical considerations,numerical simulations,and experimental measurements from a laboratory prototype are compared for different operating points.It is shown that the proposed twisting method presents an improvement in steady state error and settling time of output voltage during load changes.展开更多
In this paper,we present a twisting control scheme with proportional-integral-derivative(PID)sliding surface for a two-axis electrostatic torsional micromirror,and the utilization of the proposed scheme in a laser sca...In this paper,we present a twisting control scheme with proportional-integral-derivative(PID)sliding surface for a two-axis electrostatic torsional micromirror,and the utilization of the proposed scheme in a laser scanning system.The experimental results of set-point regulation verify that the proposed scheme provides enhanced transient response and positioning performance as compared to traditional sliding mode control.To evaluate the tracking performance of the closed-loop system,triangular waves with different frequencies are used as desired traces.With the proposed scheme the experimental results verified that the closed-loop controlled micromirror follows the given triangular trajectories precisely.A micromirror-based laser scanning system is developed to obtain images.When compared with open-loop control,the experimental results demonstrated that the proposed scheme is able to reduce the distortion of the raster scan,and improve the imaging performance in the presence of cross-coupling effect.展开更多
文摘This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to control buck switch mode converter.The idea behind this strategy is to suppress chattering and maintain robustness and finite time convergence properties of the output voltage error to the equilibrium point under the load variations and parametric uncertainties.In addition,the influence of the twisting algorithm on the performance of closed-loop system is investigated and compared with other algorithms of first order sliding mode control such as adaptive sliding mode control(ASMC),nonsingular terminal sliding mode control(NTSMC).In comparative evaluation,the transient response of the output voltage with the step change in the load and the start-up response of the output voltage with the step change in the input voltage of buck converter were compared.Experimental results were obtained from a hardware setup constructed in laboratory.Finally,for all of the surveyed control methods,the theoretical considerations,numerical simulations,and experimental measurements from a laboratory prototype are compared for different operating points.It is shown that the proposed twisting method presents an improvement in steady state error and settling time of output voltage during load changes.
基金supported by the National Natural Science Foundation of China(61374036,61703142,U1504615)the Natural Science and Engineering Research Council of Canadathe Scientific Research Key Foundation of Higher Education Institutions of Henan Province(16A413001)
文摘In this paper,we present a twisting control scheme with proportional-integral-derivative(PID)sliding surface for a two-axis electrostatic torsional micromirror,and the utilization of the proposed scheme in a laser scanning system.The experimental results of set-point regulation verify that the proposed scheme provides enhanced transient response and positioning performance as compared to traditional sliding mode control.To evaluate the tracking performance of the closed-loop system,triangular waves with different frequencies are used as desired traces.With the proposed scheme the experimental results verified that the closed-loop controlled micromirror follows the given triangular trajectories precisely.A micromirror-based laser scanning system is developed to obtain images.When compared with open-loop control,the experimental results demonstrated that the proposed scheme is able to reduce the distortion of the raster scan,and improve the imaging performance in the presence of cross-coupling effect.