期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
双参数Tweedie机器学习模型及其精算应用
1
作者 高雅倩 孟生旺 《统计研究》 北大核心 2024年第4期126-140,共15页
Tweedie回归是保险损失预测和风险定价的主要工具之一。为充分利用大数据、物联网、机器学习等技术促进保险业的数字化转型,实现更加精准的风险识别和风险定价,本文将传统的Tweedie广义线性模型推广到双参数形式,并结合机器学习算法,提... Tweedie回归是保险损失预测和风险定价的主要工具之一。为充分利用大数据、物联网、机器学习等技术促进保险业的数字化转型,实现更加精准的风险识别和风险定价,本文将传统的Tweedie广义线性模型推广到双参数形式,并结合机器学习算法,提出双参数Tweedie梯度提升树模型和双参数Tweedie组合神经网络模型。基于我国一家保险公司的车联网大数据,提取了新的驾驶行为风险因子。通过实证研究检验了双参数Tweedie梯度提升树和双参数Tweedie组合神经网络在风险识别以及风险定价中的有效性,为促进我国保险业数字化转型提供了一种新的模型和方法。 展开更多
关键词 tweedie回归 双参数梯度提升树 双参数组合神经网络 驾驶行为因子
下载PDF
基于Tweedie和零调整逆高斯回归的索赔额模型 被引量:5
2
作者 黄顺林 张颖 陈娜 《统计与决策》 CSSCI 北大核心 2010年第4期27-29,共3页
保险索赔额的分布拟合与回归模型的建立对保险费率厘定、风险因素分类、准备金计提等方面有重要意义,其研究也得到了广泛的发展和应用。文章对索赔额模型的研究与应用进行了简要的回顾分析,并基于Tweedie分布族和零调整逆高斯分布建立... 保险索赔额的分布拟合与回归模型的建立对保险费率厘定、风险因素分类、准备金计提等方面有重要意义,其研究也得到了广泛的发展和应用。文章对索赔额模型的研究与应用进行了简要的回顾分析,并基于Tweedie分布族和零调整逆高斯分布建立索赔额回归模型;以汽车第三者责任保险的损失数据为例,应用这两个回归模型,得到了比较满意的结果。 展开更多
关键词 索赔额 广义线性模型 tweedie回归 零调整逆高斯回归
下载PDF
基于分位回归的风险保费预测 被引量:3
3
作者 杨亮 孟生旺 《统计与信息论坛》 CSSCI 北大核心 2016年第9期83-88,共6页
风险保费预测是非寿险费率厘定的重要组成部分。在传统的分位回归厘定风险保费中,通常假设分位数水平是事先给定的,缺乏一定的客观性。为此,提出了一种应用分位回归厘定风险保费的新方法。基于破产概率确定保单组合的总风险保费,建立个... 风险保费预测是非寿险费率厘定的重要组成部分。在传统的分位回归厘定风险保费中,通常假设分位数水平是事先给定的,缺乏一定的客观性。为此,提出了一种应用分位回归厘定风险保费的新方法。基于破产概率确定保单组合的总风险保费,建立个体保单的分位回归模型,并与总风险保费建立等式关系,通过数值方法求解出分位数水平,实现对个体保单风险保费的预测。通过一组实际数据分析表明,该方法具有良好的预测效果。 展开更多
关键词 保费原理 风险保费 分位回归 tweedie回归
下载PDF
基于半连续两部模型的保险损失预测
4
作者 鲁亚会 刘爱义 《浙江科技学院学报》 CAS 2023年第6期467-474,共8页
【目的】提高保险领域中保单累积损失预测的准确率。传统的Tweedie回归模型只能对非零均值建立回归模型,却不能对零概率建立回归模型,从而导致该模型的拟合效果并不理想。【方法】考虑到保单损失数据中往往包含着大量的零索赔,此时可视... 【目的】提高保险领域中保单累积损失预测的准确率。传统的Tweedie回归模型只能对非零均值建立回归模型,却不能对零概率建立回归模型,从而导致该模型的拟合效果并不理想。【方法】考虑到保单损失数据中往往包含着大量的零索赔,此时可视其为一种半连续型数据。因此,基于半连续两部模型,并考虑到累积损失中非零连续部分的分布类型,提出3种不同的累积损失预测模型,并结合一组实际损失数据进行模型对比分析。【结果】与Tweedie回归模型相比,本研究所提出的半连续两部回归模型的赤池信息准则值(Akaike information criterion,AIC)和贝叶斯信息量准则值(Bayesian information criterion,BIC)更小,具有较好的拟合效果。【结论】本研究结果可为保险领域中的保单累积损失预测提供参考。 展开更多
关键词 累积损失预测 半连续数据 tweedie回归模型 两部回归模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部