Global efforts for environmental cleanliness through the control of gaseous emissions from vehicles are gaining momentum and attracting increasing attention. Calibration plays a crucial role in these efforts by ensuri...Global efforts for environmental cleanliness through the control of gaseous emissions from vehicles are gaining momentum and attracting increasing attention. Calibration plays a crucial role in these efforts by ensuring the quantitative assessment of emissions for informed decisions on environmental treatments. This paper describes a method for the calibration of CO/CO<sub>2</sub> monitors used for periodic inspections of vehicles in cites. The calibration was performed in the selected ranges: 900 - 12,000 µmol/mol for CO and 2000 - 20,000 µmol/mol for CO<sub>2</sub>. The traceability of the measurement results to the SI units was ensured by using certified reference materials from CO/N<sub>2</sub> and CO<sub>2</sub>/N<sub>2</sub> primary gas mixtures. The method performance was evaluated by assessing its linearity, accuracy, precision, bias, and uncertainty of the calibration results. The calibration data exhibited a strong linear trend with R² values close to 1, indicating an excellent fit between the measured values and the calibration lines. Precision, expressed as relative standard deviation (%RSD), ranged from 0.48 to 4.56% for CO and from 0.97 to 3.53% for CO<sub>2</sub>, staying well below the 5% threshold for reporting results at a 95% confidence level. Accuracy measured as percent recovery, was consistently high (≥ 99.1%) for CO and ranged from 84.90% to 101.54% across the calibration range for CO<sub>2</sub>. In addition, the method exhibited minimal bias for both CO and CO<sub>2</sub> calibrations and thus provided a reliable and accurate approach for calibrating CO/CO<sub>2</sub> monitors used in vehicle inspections. Thus, it ensures the effectiveness of exhaust emission control for better environment.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
文摘Global efforts for environmental cleanliness through the control of gaseous emissions from vehicles are gaining momentum and attracting increasing attention. Calibration plays a crucial role in these efforts by ensuring the quantitative assessment of emissions for informed decisions on environmental treatments. This paper describes a method for the calibration of CO/CO<sub>2</sub> monitors used for periodic inspections of vehicles in cites. The calibration was performed in the selected ranges: 900 - 12,000 µmol/mol for CO and 2000 - 20,000 µmol/mol for CO<sub>2</sub>. The traceability of the measurement results to the SI units was ensured by using certified reference materials from CO/N<sub>2</sub> and CO<sub>2</sub>/N<sub>2</sub> primary gas mixtures. The method performance was evaluated by assessing its linearity, accuracy, precision, bias, and uncertainty of the calibration results. The calibration data exhibited a strong linear trend with R² values close to 1, indicating an excellent fit between the measured values and the calibration lines. Precision, expressed as relative standard deviation (%RSD), ranged from 0.48 to 4.56% for CO and from 0.97 to 3.53% for CO<sub>2</sub>, staying well below the 5% threshold for reporting results at a 95% confidence level. Accuracy measured as percent recovery, was consistently high (≥ 99.1%) for CO and ranged from 84.90% to 101.54% across the calibration range for CO<sub>2</sub>. In addition, the method exhibited minimal bias for both CO and CO<sub>2</sub> calibrations and thus provided a reliable and accurate approach for calibrating CO/CO<sub>2</sub> monitors used in vehicle inspections. Thus, it ensures the effectiveness of exhaust emission control for better environment.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.