A novel air-powered twin-rotor piston engine(ATPE) utilizing a differential velocity driving mechanism to achieve a high output torque was proposed.The ATPE had eight separated rotary cylinders which can dynamically e...A novel air-powered twin-rotor piston engine(ATPE) utilizing a differential velocity driving mechanism to achieve a high output torque was proposed.The ATPE had eight separated rotary cylinders which can dynamically enlarge the engine displacement as a result of the special driving mechanism,which was named dynamic volume expansion.The mathematical model of ATPE comprising a dynamic model and a thermodynamic model was established under the assumption of no mechanical friction.The model was numerically simulated in Matlab.The results show that shortage of low output torque confusing traditional air-powered engines can be overcome.The average output torque sharply increases to 100 N·m,which is about three times that of traditional air-powered engines with equal cylinder displacement under the pressure of 0.6 MPa at 480 r/min.ATPE can be used to drive vehicles directly without transmission box,therefore the energy transfer efficiency of ATPE can be increased.Furthermore,benefitting from the novel gas distribution system,the engine shows an ability in self-adjusting under different loads.The arrangements of air ports automatically adjust the open interval of air ports according to the load,which may simplify the speed control system.展开更多
An iterative free-wake computational method is developed for the prediction of aerodynamic interaction characteristics between the twin rotors of a tandem helicopter.Here the mutual interaction effects between twin ro...An iterative free-wake computational method is developed for the prediction of aerodynamic interaction characteristics between the twin rotors of a tandem helicopter.Here the mutual interaction effects between twin rotors are included,as well as those between the rotor and wake.A rotor wake model,blade aerodynamic model and rotor trim model are coupled during the process of solution.A new dual-rotor trim approach is presented to fit for the aerodynamic interaction calculations between tandem twin rotors.By the present method,the blade aerodynamic loads and rotor performance for the twin rotors under the interactional condition are calculated,and the comparisons with available experimental data are also made to indicate the capability of the proposed method.Then,the effects of such parameters as the longitudinal separation and axial separation between twin rotors on the aerodynamic interaction characteristics are analyzed.Based on the investigation,the conclusions are obtained to be of benefit to the configuration design of tandem rotors.Furthermore,the performance comparison between the tandem rotors and a single rotor is conducted.It is shown that the strongest interaction does not appear in a hover state,but in a low-speed forward flight state.展开更多
基金Projects(51105365,51475464)supported by the National Natural Science Foundation of China
文摘A novel air-powered twin-rotor piston engine(ATPE) utilizing a differential velocity driving mechanism to achieve a high output torque was proposed.The ATPE had eight separated rotary cylinders which can dynamically enlarge the engine displacement as a result of the special driving mechanism,which was named dynamic volume expansion.The mathematical model of ATPE comprising a dynamic model and a thermodynamic model was established under the assumption of no mechanical friction.The model was numerically simulated in Matlab.The results show that shortage of low output torque confusing traditional air-powered engines can be overcome.The average output torque sharply increases to 100 N·m,which is about three times that of traditional air-powered engines with equal cylinder displacement under the pressure of 0.6 MPa at 480 r/min.ATPE can be used to drive vehicles directly without transmission box,therefore the energy transfer efficiency of ATPE can be increased.Furthermore,benefitting from the novel gas distribution system,the engine shows an ability in self-adjusting under different loads.The arrangements of air ports automatically adjust the open interval of air ports according to the load,which may simplify the speed control system.
文摘An iterative free-wake computational method is developed for the prediction of aerodynamic interaction characteristics between the twin rotors of a tandem helicopter.Here the mutual interaction effects between twin rotors are included,as well as those between the rotor and wake.A rotor wake model,blade aerodynamic model and rotor trim model are coupled during the process of solution.A new dual-rotor trim approach is presented to fit for the aerodynamic interaction calculations between tandem twin rotors.By the present method,the blade aerodynamic loads and rotor performance for the twin rotors under the interactional condition are calculated,and the comparisons with available experimental data are also made to indicate the capability of the proposed method.Then,the effects of such parameters as the longitudinal separation and axial separation between twin rotors on the aerodynamic interaction characteristics are analyzed.Based on the investigation,the conclusions are obtained to be of benefit to the configuration design of tandem rotors.Furthermore,the performance comparison between the tandem rotors and a single rotor is conducted.It is shown that the strongest interaction does not appear in a hover state,but in a low-speed forward flight state.