期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Improved Twin Support Vector Machine Algorithm and Applications in Classification Problems
1
作者 Sun Yi Wang Zhouyang 《China Communications》 SCIE CSCD 2024年第5期261-279,共19页
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu... The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap. 展开更多
关键词 FUZZY ordered regression(OR) relaxing variables twin support vector machine
下载PDF
Traffic Sign Recognition Based on CNN and Twin Support Vector Machine Hybrid Model
2
作者 Yang Sun Longwei Chen 《Journal of Applied Mathematics and Physics》 2021年第12期3122-3142,共21页
With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly af... With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly affect the performance of the entire network. Traditional processing methods include classification models such as fully connected network models and support vector machines. In order to solve the problem that the traditional convolutional neural network is prone to over-fitting for the classification of small samples, a CNN-TWSVM hybrid model was proposed by fusing the twin support vector machine (TWSVM) with higher computational efficiency as the CNN classifier, and it was applied to the traffic sign recognition task. In order to improve the generalization ability of the model, the wavelet kernel function is introduced to deal with the nonlinear classification task. The method uses the network initialized from the ImageNet dataset to fine-tune the specific domain and intercept the inner layer of the network to extract the high abstract features of the traffic sign image. Finally, the TWSVM based on wavelet kernel function is used to identify the traffic signs, so as to effectively solve the over-fitting problem of traffic signs classification. On GTSRB and BELGIUMTS datasets, the validity and generalization ability of the improved model is verified by comparing with different kernel functions and different SVM classifiers. 展开更多
关键词 CNN twin support vector machine Wavelet Kernel Function Traffic Sign Recognition Transfer Learning
下载PDF
Improved twin support vector machine 被引量:6
3
作者 TIAN YingJie JU XuChan +1 位作者 QI ZhiQuan SHI Yong 《Science China Mathematics》 SCIE 2014年第2期417-432,共16页
We improve the twin support vector machine(TWSVM)to be a novel nonparallel hyperplanes classifier,termed as ITSVM(improved twin support vector machine),for binary classification.By introducing the diferent Lagrangian ... We improve the twin support vector machine(TWSVM)to be a novel nonparallel hyperplanes classifier,termed as ITSVM(improved twin support vector machine),for binary classification.By introducing the diferent Lagrangian functions for the primal problems in the TWSVM,we get an improved dual formulation of TWSVM,then the resulted ITSVM algorithm overcomes the common drawbacks in the TWSVMs and inherits the essence of the standard SVMs.Firstly,ITSVM does not need to compute the large inverse matrices before training which is inevitable for the TWSVMs.Secondly,diferent from the TWSVMs,kernel trick can be applied directly to ITSVM for the nonlinear case,therefore nonlinear ITSVM is superior to nonlinear TWSVM theoretically.Thirdly,ITSVM can be solved efciently by the successive overrelaxation(SOR)technique or sequential minimization optimization(SMO)method,which makes it more suitable for large scale problems.We also prove that the standard SVM is the special case of ITSVM.Experimental results show the efciency of our method in both computation time and classification accuracy. 展开更多
关键词 support vector machine twin support vector machine nonparallel structural risk minimization CLASSIFICATION
原文传递
Quadratic Kernel-Free Least Square Twin Support Vector Machine for Binary Classification Problems 被引量:2
4
作者 Qian-Qian Gao Yan-Qin Bai Ya-Ru Zhan 《Journal of the Operations Research Society of China》 EI CSCD 2019年第4期539-559,共21页
In this paper,a new quadratic kernel-free least square twin support vector machine(QLSTSVM)is proposed for binary classification problems.The advantage of QLSTSVM is that there is no need to select the kernel function... In this paper,a new quadratic kernel-free least square twin support vector machine(QLSTSVM)is proposed for binary classification problems.The advantage of QLSTSVM is that there is no need to select the kernel function and related parameters for nonlinear classification problems.After using consensus technique,we adopt alternating direction method of multipliers to solve the reformulated consensus QLSTSVM directly.To reduce CPU time,the Karush-Kuhn-Tucker(KKT)conditions is also used to solve the QLSTSVM.The performance of QLSTSVM is tested on two artificial datasets and several University of California Irvine(UCI)benchmark datasets.Numerical results indicate that the QLSTSVM may outperform several existing methods for solving twin support vector machine with Gaussian kernel in terms of the classification accuracy and operation time. 展开更多
关键词 twin support vector machine Quadratic kernel-free Least square Binary classification
原文传递
Intrusion Detection Model with Twin Support Vector Machines 被引量:2
5
作者 何俊 郑世慧 《Journal of Shanghai Jiaotong university(Science)》 EI 2014年第4期448-454,共7页
Intrusion detection system(IDS) is becoming a critical component of network security. However,the performance of many proposed intelligent intrusion detection models is still not competent to be applied to real networ... Intrusion detection system(IDS) is becoming a critical component of network security. However,the performance of many proposed intelligent intrusion detection models is still not competent to be applied to real network security. This paper aims to explore a novel and effective approach to significantly improve the performance of IDS. An intrusion detection model with twin support vector machines(TWSVMs) is proposed.In this model, an efficient algorithm is also proposed to determine the parameter of TWSVMs. The performance of the proposed intrusion detection model is evaluated with KDD'99 dataset and is compared with those of some recent intrusion detection models. The results demonstrate that the proposed intrusion detection model achieves remarkable improvement in intrusion detection rate and more balanced performance on each type of attacks.Moreover, TWSVMs consume much less training time than standard support vector machines(SVMs). 展开更多
关键词 network security twin support vector machine(TWSVM) parameter determination
原文传递
Intuitionistic Fuzzy Laplacian Twin Support Vector Machine for Semi-supervised Classification
6
作者 Jia-Bin Zhou Yan-Qin Bai +1 位作者 Yan-Ru Guo Hai-Xiang Lin 《Journal of the Operations Research Society of China》 EI CSCD 2022年第1期89-112,共24页
In general,data contain noises which come from faulty instruments,flawed measurements or faulty communication.Learning with data in the context of classification or regression is inevitably affected by noises in the d... In general,data contain noises which come from faulty instruments,flawed measurements or faulty communication.Learning with data in the context of classification or regression is inevitably affected by noises in the data.In order to remove or greatly reduce the impact of noises,we introduce the ideas of fuzzy membership functions and the Laplacian twin support vector machine(Lap-TSVM).A formulation of the linear intuitionistic fuzzy Laplacian twin support vector machine(IFLap-TSVM)is presented.Moreover,we extend the linear IFLap-TSVM to the nonlinear case by kernel function.The proposed IFLap-TSVM resolves the negative impact of noises and outliers by using fuzzy membership functions and is a more accurate reasonable classi-fier by using the geometric distribution information of labeled data and unlabeled data based on manifold regularization.Experiments with constructed artificial datasets,several UCI benchmark datasets and MNIST dataset show that the IFLap-TSVM has better classification accuracy than other state-of-the-art twin support vector machine(TSVM),intuitionistic fuzzy twin support vector machine(IFTSVM)and Lap-TSVM. 展开更多
关键词 twin support vector machine Semi-supervised classification Intuitionistic fuzzy Manifold regularization Noisy data
原文传递
Structural regularized twin support vector machine based on within-class scatter and between-class scatter
7
作者 Wu Qing Fu Yanlin +1 位作者 Fan Jiulun Ma Tianlu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第4期39-52,共14页
Robust minimum class variance twin support vector machine(RMCV-TWSVM) presented previously gets better classification performance than the classical TWSVM. The RMCV-TWSVM introduces the class variance matrix of positi... Robust minimum class variance twin support vector machine(RMCV-TWSVM) presented previously gets better classification performance than the classical TWSVM. The RMCV-TWSVM introduces the class variance matrix of positive and negative samples into the construction of two hyperplanes. However, it does not consider the total structure information of all the samples, which can substantially reduce its classification accuracy. In this paper, a new algorithm named structural regularized TWSVM based on within-class scatter and between-class scatter(WSBS-STWSVM) is put forward. The WSBS-STWSVM can make full use of the total within-class distribution information and between-class structure information of all the samples. The experimental results illustrate high classification accuracy and strong generalization ability of the proposed algorithm. 展开更多
关键词 generalization ability twin support vector machine within-class scatter between-class scatter
原文传递
A Probability Approach to Anomaly Detection with Twin Support Vector Machines
8
作者 聂巍 何迪 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第4期385-391,共7页
Classification of intrusion attacks and normal network flow is a critical and challenging issue in network security study. Many intelligent intrusion detection models are proposed, but their performances and efficienc... Classification of intrusion attacks and normal network flow is a critical and challenging issue in network security study. Many intelligent intrusion detection models are proposed, but their performances and efficiencies are not satisfied to real computer networks. This paper presents a novel effective intrusion detection system based on statistic reference model and twin support vector machines (TWSVMs). Moreover, a network flow feature selection procedure has been studied and implemented with TWSVMs. The performances of proposed system are evaluated through using the fifth international conference on knowledge discovery and data mining in 1999 (KDD'99) data set collected at MIT's Lincoln Labs and the results indicate that the proposed system is more efficient and effective than conventional support vector machines (SVMs) and TWSVMs. 展开更多
关键词 intrusion detection system (IDS) twin support vector machines (TWSVMs) PROBABILITY
原文传递
TWIN SUPPORT TENSOR MACHINES FOR MCS DETECTION 被引量:8
9
作者 Zhang Xinsheng Gao Xinbo Wang Ying 《Journal of Electronics(China)》 2009年第3期318-325,共8页
Tensor representation is useful to reduce the overfitting problem in vector-based learning algorithm in pattern recognition.This is mainly because the structure information of objects in pattern analysis is a reasonab... Tensor representation is useful to reduce the overfitting problem in vector-based learning algorithm in pattern recognition.This is mainly because the structure information of objects in pattern analysis is a reasonable constraint to reduce the number of unknown parameters used to model a classifier.In this paper, we generalize the vector-based learning algorithm TWin Support Vector Machine(TWSVM) to the tensor-based method TWin Support Tensor Machines(TWSTM), which accepts general tensors as input.To examine the effectiveness of TWSTM, we implement the TWSTM method for Microcalcification Clusters(MCs) detection.In the tensor subspace domain, the MCs detection procedure is formulated as a supervised learning and classification problem, and TWSTM is used as a classifier to make decision for the presence of MCs or not.A large number of experiments were carried out to evaluate and compare the performance of the proposed MCs detection algorithm.By comparison with TWSVM, the tensor version reduces the overfitting problem. 展开更多
关键词 Microcalcification Clusters (MCs) detection twin support Tensor machine (TWSTM) twin support vector machine (TWSVM) Receiver Operating Characteristic (ROC) curve
下载PDF
Robust least squares projection twin SVM and its sparse solution 被引量:1
10
作者 ZHOU Shuisheng ZHANG Wenmeng +1 位作者 CHEN Li XU Mingliang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期827-838,共12页
Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsi... Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly. 展开更多
关键词 OUTLIERS robust least squares projection twin support vector machine(R-LSPTSVM) low-rank approximation sparse solution
下载PDF
Political Optimizer with Deep Learning-Enabled Tongue Color Image Analysis Model
11
作者 Anwer Mustafa Hilal Eatedal Alabdulkreem +5 位作者 Jaber S.Alzahrani Majdy M.Eltahir Mohamed I.Eldesouki Ishfaq Yaseen Abdelwahed Motwakel Radwa Marzouk 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1129-1143,共15页
Biomedical image processing is widely utilized for disease detection and classification of biomedical images.Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at an... Biomedical image processing is widely utilized for disease detection and classification of biomedical images.Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at anytime and anywhere.For removing the qualitative aspect,tongue images are quantitatively inspected,proposing a novel disease classification model in an automated way is preferable.This article introduces a novel political optimizer with deep learning enabled tongue color image analysis(PODL-TCIA)technique.The presented PODL-TCIA model purposes to detect the occurrence of the disease by examining the color of the tongue.To attain this,the PODL-TCIA model initially performs image pre-processing to enhance medical image quality.Followed by,Inception with ResNet-v2 model is employed for feature extraction.Besides,political optimizer(PO)with twin support vector machine(TSVM)model is exploited for image classification process,shows the novelty of the work.The design of PO algorithm assists in the optimal parameter selection of the TSVM model.For ensuring the enhanced outcomes of the PODL-TCIA model,a wide-ranging experimental analysis was applied and the outcomes reported the betterment of the PODL-TCIA model over the recent approaches. 展开更多
关键词 Tongue color image analysis political optimizer twin support vector machine inception model deep learning
下载PDF
Recognition of motor imagery tasks for BCI using CSP and chaotic PSO twin SVM 被引量:9
12
作者 Li Duan Zhang Hongxin +1 位作者 Muhammad Saad Khan Mi Fang 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2017年第3期83-90,共8页
Accurate modeling and recognition of the brain activity patterns for reliable communication and interaction are still a challenging task for the motor imagery (MI) brain-computer interface (BCI) system. In this pa... Accurate modeling and recognition of the brain activity patterns for reliable communication and interaction are still a challenging task for the motor imagery (MI) brain-computer interface (BCI) system. In this paper, we propose a common spatial pattern (CSP) and chaotic particle swarm optimization (CPSO) twin support vector machine (TWSVM) scheme for classification of MI electroencephalography (EEG). The self-adaptive artifact removal and CSP were used to obtain the most distinguishable features. To improve the recognition results, CPSO was employed to tune the hyper-parameters of the TWSVM classifier. The usefulness of the proposed method was evaluated using the BCI competition IV-IIa dataset. The experimental results showed that the mean recognition accuracy of our proposed method was increased by 5.35%, 4.33%, 0.78%, 1.45%, and 9.26% compared with the CPSO support vector machine (SVM), particle swarm optimization (PSO) TWSVM, linear discriminant analysis (LDA), back propagation (BP) and probabilistic neural network (PNN), respectively. Furthermore, it achieved a faster or comparable central processing unit (CPU) running time over the traditional SVM methods. 展开更多
关键词 brain-computer interface motor imagery twin support vector machine chaotic particle swarm optimization
原文传递
Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects 被引量:4
13
作者 Mao-xiang CHU An-na WANG +1 位作者 Rong-fen GONG Mo SHA 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第2期174-180,共7页
Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region sam... Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region samples center method with adjustable pruning scale was used to prune data samples. This method could reduce classifierr s training time and testing time. Secondly, ELS-TWSVM was proposed to classify the data samples. By introducing error variable contribution parameter and weight parameter, ELS-TWSVM could restrain the impact of noise sam- ples and have better classification accuracy. Finally, multi-class classification algorithms of ELS-TWSVM were pro- posed by combining ELS-TWSVM and complete binary tree. Some experiments were made on two-dimensional data- sets and strip steel surface defect datasets. The experiments showed that the multi-class classification methods of ELS-TWSVM had higher classification speed and accuracy for the datasets with large-scale, unbalanced and noise samples. 展开更多
关键词 multi-class classification least squares twin support vector machine error variable contribution WEIGHT binary tree strip steel surface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部