期刊文献+
共找到19,987篇文章
< 1 2 250 >
每页显示 20 50 100
Modeling and Validation of Diamagnetic Rotor Levitated by Permanent Magnetics
1
作者 Yuanping Xu Yue Zhang +1 位作者 Jin Zhou Chaowu Jin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期224-235,共12页
As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical sys... As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical systems.The foundation of a diamagnetic levitation system is mathematical modeling,which is essential for operating performance optimization and stability prediction.However,few studies on systematic mathematical modeling have been reported.In this study,a systematic mathematical model for a disc-shaped diamagnetically levitated rotor on a permanent magnet array is proposed.Based on the proposed model,the magnetic field distribution characteristics,diamagnetic levitation force characteristics(i.e.,levitation height and stiffness),and optimized theoretical conditions for realizing stable levitation are determined.Experiments are conducted to verify the feasibility of the proposed mathematical model.Theoretical predictions and experimental results indicate that increasing the levitation height enlarges the stable region.Moreover,with a further increase in the rotor radius,the stable regions of the rotor gradually diminish and even vanish.Thus,when the levitation height is fixed,a moderate rotor radius permits stable levitation.This study proposes a mathematical modeling method for a diamagnetic levitation system that has potential applications in miniaturized mechanical systems. 展开更多
关键词 Diamagnetic levitation Magnetic levitation rotor MODELING VALIDATION STABILITY
下载PDF
A Blade Altering Toolbox for Automating Rotor Design Optimization
2
作者 Akiva Wernick Jen-Ping Chen 《Communications on Applied Mathematics and Computation》 EI 2024年第1期688-704,共17页
The Blade Altering Toolbox(BAT)described in this paper is a tool designed for fast reconstruction of an altered blade geometry for design optimization purposes.The BAT algorithm is capable of twisting a given rotor’s... The Blade Altering Toolbox(BAT)described in this paper is a tool designed for fast reconstruction of an altered blade geometry for design optimization purposes.The BAT algorithm is capable of twisting a given rotor’s angle of attack and stretching the chord length along the span of the rotor.Several test cases were run using the BAT’s algorithm.The BAT code’s twisting,stretching,and mesh reconstruction capabilities proved to be able to handle reasonably large geometric alterations to a provided input rotor geometry.The test examples showed that the toolbox’s algorithm could handle any stretching of the blade’s chord as long as the blade remained within the original bounds of the unaltered mesh.The algorithm appears to fail when the net twist angle applied the geometry exceeds approximately 30 degrees,however this limitation is dependent on the initial geometry and other input parameters.Overall,the algorithm is a very powerful tool for automating a design optimization procedure. 展开更多
关键词 Mesh reconstruction Mesh alteration rotor alteration Design optimization
下载PDF
Electromagnetic Performance Analysis of Variable Flux Memory Machines with Series-magnetic-circuit and Different Rotor Topologies
3
作者 Qiang Wei Z.Q.Zhu +4 位作者 Yan Jia Jianghua Feng Shuying Guo Yifeng Li Shouzhi Feng 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期3-11,共9页
In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies... In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies with different interior permanent magnet(IPM)arrangements are evolved and optimized under same constrains.Based on two-dimensional(2-D)finite element(FE)method,their electromagnetic performance at magnetization and demagnetization states is evaluated.It reveals that the iron bridge and rotor lamination region between constant PM(CPM)and variable PM(VPM)play an important role in torque density and flux regulation(FR)capabilities.Besides,the global efficiency can be improved in VFM machines by adjusting magnetization state(MS)under different operating conditions. 展开更多
关键词 Memory machine Permanent magnet rotor topologies Series magnetic circuit Variable flux
下载PDF
Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident
4
作者 Mengdong An Weiyuan Zhong +1 位作者 Wei Xu Xiuli Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1331-1349,共19页
The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbin... The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip.The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences.This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation,which need to be analyzed and understood.This study constructed transient flow and rotational speed mathematical models under various degrees of rotor seizure using the test data collected from a dedicated transient rotor seizure test system.Then,bidirectional fluid-solid coupling simulations were conducted to investigate the flow evolution mechanism.It is found that the influence of the impeller structure size and transient braking acceleration on the unsteady head(Hu)is dominant in rotor seizure accident events.Moreover,the present results also show that the rotational acceleration additional head(Hu1)is much higher than the instantaneous head(Hu2). 展开更多
关键词 Reactor coolant pump bidirectional fluid-solid coupling rotor seizure nuclear accident
下载PDF
A Modified Iterative Learning Control Approach for the Active Suppression of Rotor Vibration Induced by Coupled Unbalance and Misalignment
5
作者 Yifan Bao Jianfei Yao +1 位作者 Fabrizio Scarpa Yan Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期242-253,共12页
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr... This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed. 展开更多
关键词 rotor vibration suppression Modified iterative learning control UNBALANCE Parallel misalignment Active magnetic actuator
下载PDF
Analysis and Research on Aerodynamic Characteristics of Quad Tilt Rotor Aircraft
6
作者 Jike Jia Xiaomei Ye +2 位作者 Guoyi He Qingjin Huang Zhile Hong 《Advances in Aerospace Science and Technology》 2024年第1期28-39,共12页
For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of... For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft. 展开更多
关键词 Quad Tilt rotor Aircraft Analysis of Aerodynamic Characteristics CFD Method
下载PDF
Optimization of the Gas Generator in Composite Power System with Tip-Jet Rotor
7
作者 Jianxiang Tang Yifei Wu +1 位作者 Yun Wang Jinwu Wu 《Journal of Power and Energy Engineering》 2024年第3期60-74,共15页
The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of th... The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment. 展开更多
关键词 Tip-Jet Driven rotor Composite Power System Gas Generator Optimization Hydrogen Peroxide Aerodynamic Characteristics Numerical Simulation
下载PDF
Dynamic stiffness characteristics of aero-engine elastic support structure and its effects on rotor systems:mechanism and numerical and experimental studies 被引量:4
8
作者 Lei LI Zhong LUO +1 位作者 Kaining LIU Jilai ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期221-236,共16页
The support structure of a rotor system is subject to vibration excitation,which results in the stiffness of the support structure varying with the excitation frequency(i.e.,the dynamic stiffness).However,the dynamic ... The support structure of a rotor system is subject to vibration excitation,which results in the stiffness of the support structure varying with the excitation frequency(i.e.,the dynamic stiffness).However,the dynamic stiffness and its effect mechanism have been rarely incorporated in open studies of the rotor system.Therefore,this study theoretically reveals the effect mechanism of dynamic stiffness on the rotor system.Then,the numerical study and experimental verification are conducted on the dynamic stiffness characteristics of a squirrel cage,which is a common support structure for aero-engine.Moreover,the static stiffness experiment is also performed for comparison.Finally,a rotor system model considering the dynamic stiffness of the support structure is presented.The presented rotor model is used to validate the results of the theoretical analysis.The results illustrate that the dynamic stiffness reduces the critical speed of the rotor system and may lead to a new resonance. 展开更多
关键词 dynamic stiffness squirrel cage rotor system dynamic characteristic critical speed
下载PDF
Crack Fault Diagnosis and Location Method for a Dual-Disk Hollow Shaft Rotor System Based on the Radial Basis Function Network and Pattern Recognition Neural Network 被引量:1
9
作者 Yuhong Jin Lei Hou +1 位作者 Zhenyong Lu Yushu Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期180-197,共18页
The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics cause... The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown. 展开更多
关键词 Hollow shaft rotor Breathing crack Radial basis function network Pattern recognition neural network Machine learning
下载PDF
Investigation of Nonlinear PI Multi-loop Control Strategy for Aircraft HVDC Generator System with Wound Rotor Synchronous Machine 被引量:1
10
作者 Zhaoyang Qu Zhuoran Zhang +1 位作者 Jincai Li Heng Shi 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第1期92-99,共8页
In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is propo... In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is proposed in this paper.Traditional voltage control method is hard to achieve the dynamic performance requirements of the HVDC generation system under a wide speed range,so the nonlinear PI parameter adjustment,load current feedback and speed feedback are added to the voltage and excitation current double loop control.The transfer function of the HVDC generation system is derived,and the relationship between speed,load current and PI parameters is obtained.The PI parameters corresponding to the load at certain speed are used to shorten the adjusting time when the load suddenly changes.The dynamic responses in transient processes are analyzed by experiment.The results illustrate that the WRSM HVDC generator system with this method has better dynamic performance. 展开更多
关键词 Aircraft HVDC generation system More electric aircraft Transient performance Wound rotor synchronous machine
下载PDF
Accelerator-mode islands and superdiffusion in double-kicked rotor
11
作者 王风涤 方萍 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期1-8,共8页
This paper presents a theoretical investigation of the presence of acceleration islands in the phase space of doublekicked rotor(DKR) systems, which can lead to superdiffusive behavior. We establish the conditions for... This paper presents a theoretical investigation of the presence of acceleration islands in the phase space of doublekicked rotor(DKR) systems, which can lead to superdiffusive behavior. We establish the conditions for the existence of period-1 acceleration centers and subsequently calculate the stability conditions for both period-1 and period-2 accelerate mode islands. A detailed analysis of local and global diffusion in the vicinity of the islands and the stickiness regions is provided. It is demonstrated that the mean stickiness time decays exponentially when the phase point is located in the interior of the island. Moreover, the phase point undergoes a power-law decay with a power equal to approximately 5when entering the sticky region. These findings offer a foundation for future exploration of quantum dynamics in the DKR system. 展开更多
关键词 superdiffuision accelerator-mode islands double-kicked rotor
下载PDF
Rotor performance enhancement by alternating current dielectric barrier discharge plasma actuation
12
作者 赵光银 王畅 +2 位作者 杨永东 李国强 史喆羽 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期120-127,共8页
An experimental system was established to explore the plasma flow control effect for helicopter rotors in hover mode.With the plasma actuator applied at the leading edge of the rotor blades,alternating current dielect... An experimental system was established to explore the plasma flow control effect for helicopter rotors in hover mode.With the plasma actuator applied at the leading edge of the rotor blades,alternating current dielectric barrier discharge(AC-DBD) plasma actuation was generated by a sinusoidal AC high-voltage generator.By direct force measurement,the influence of actuation parameters on the aerodynamic performance of the rotor was investigated at a tip Reynolds number of 1.7 × 105.AC-DBD actuation can delay the blade stall to more than 3° with a 20%increase of about in the thrust coefficient at the post-stall pitch.At a constant motor power driving the rotor,AC-DBD actuation could reduce the rotor’s torque at the stalled pitch and increase the rotational speed of the rotor.Also,AC-DBD actuation could maintain a relatively high hover efficiency of the rotor at large collective pitches.In a wide range of actuation parameters,AC-DBD plasma actuation could improve the rotor’s aerodynamic performance at large blade pitches.High-speed photography of the tuft motion on the blade’s upper surface showed that AC-DBD plasma actuation could promote the reattachment of the blade’s separation flow. 展开更多
关键词 rotor flow control plasma actuator dielectric barrier discharge force measurement
下载PDF
Numerical Study on Low-Reynolds Compressible Flows around Mars Helicopter Rotor Blade Airfoil
13
作者 Takuma Yamaguchi Masayuki Anyoji 《Journal of Flow Control, Measurement & Visualization》 CAS 2023年第2期30-48,共19页
High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. H... High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. However, the compressibility effect and shock wave generation associated with the increase in the Mach number (M) and the trend change due to their interference have not been clarified. The purpose is to clear the compressibility effect and its impact of shock wave generation on the flow field and aerodynamics. Therefore, we perform a two-dimensional unsteady calculation by Computational fluid dynamics (CFD) analysis using the CLF5605 airfoil used in the Mars helicopter Ingenuity, which succeeded in its first flight on Mars. The calculation conditions are set to the Reynolds number (Re) at 75% rotor span in hovering (Re = 15,400), and the Mach number was varied from incompressible (M = 0.2) to transonic (M = 1.2). The compressible fluid dynamics solver FaSTAR developed by the Japan aerospace exploration agency (JAXA) is used, and calculations are performed under multiple conditions in which the Mach number and angle of attack (α) are swept. The results show that a flow field is similar to that in the Earth’s atmosphere above M = 1.0, such as bow shock at the leading edge, whereas multiple λ-type shock waves are observed over the separated shear layer above α = 3° at M = 0.80. However, no significant difference is found in the C<sub>p</sub> distribution around the airfoil between M = 0.6 and M = 0.8. From the results, it is found that multiple λ-type shock waves have no significant effect on the airfoil surface pressure distribution, the separated shear layer effect is dominant in the surface pressure change and aerodynamic characteristics. 展开更多
关键词 CFD CLF5605 rotor Blade Airfoil Compressibility Effect Low-Reynolds Number Mars Helicopter Separation Bubble Shock Wave
下载PDF
The Advantages of Using Rotating Machines with Profiled Rotors
14
作者 Gabriel Fischer-Szava Nicolae Băran +4 位作者 Mihaela Constantin Mugurel Oprea Cătălina Dobre Georgiana Duiculete Beatrice Ibrean 《World Journal of Engineering and Technology》 2023年第1期41-47,共7页
In order to achieve a lower consumed energy, the performance of a new type of rotating volumetric pump with two profiled rotors (variant I) which is compared with a centrifugal pump (variant II) is presented. The... In order to achieve a lower consumed energy, the performance of a new type of rotating volumetric pump with two profiled rotors (variant I) which is compared with a centrifugal pump (variant II) is presented. The analysis regarding the same flow rate of transported liquid and the same pressure increases points out the conduct of the system at the variation of the key operating parameters. The actual driving power of the rotating volumetric pump is higher stating that is more advantageous in operation. The effective efficiency of the system is improved due to the original constructive solution. 展开更多
关键词 Rotating Machine Volumetric Pump Profiled rotors Centrifugal Pump Energy Performances
下载PDF
Weak Fault Detection of Rotor Winding Inter-Turn Short Circuit in Excitation System Based on Residual Interval Observer
15
作者 Gang Liu Xinqi Chen +4 位作者 Lijuan Bao Linbo Xu Chaochao Dai Lei Yang Chengmin Wang 《Structural Durability & Health Monitoring》 EI 2023年第4期337-351,共15页
Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is desi... Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is designed.Firstly,the mechanism of the inter-turn short circuit of the rotor winding in the excitation system is modeled under the premise of stable working conditions,and electromagnetic decoupling and system simplification are carried out through Park Transform.An interval observer is designed based on the current residual in the two-phase coordinate system,and the sensitive and stable conditions of the observer is preset.The fault diagnosis process based on the interval observer is formulated,and the observer gain matrix is convexly optimized by linear matrix inequality.The numerical simulation and experimental results show that the inter-turn short circuit weak fault is hardly detected directly through the current signal,but the fault is quickly and accurately diagnosed through the residual internal observer.Compared with the traditional fault diagnosis method based on excitation current,the diagnosis speed and accuracy are greatly improved,and the probability of misdiagnosis also decreases.This method provides a theoretical basis for weak fault identification of excitation systems,and is of great significance for the operation and maintenance of excitation systems. 展开更多
关键词 Excitation system interval observer rotor winding weak fault detection inter-turn shortcut
下载PDF
Coordinated Rotor-Side Control Strategy for Doubly-FedWind Turbine under Symmetrical and Asymmetrical Grid Faults
16
作者 Quanchun Yan Chao Yuan +2 位作者 WenGu Yanan Liu Yiming Tang 《Energy Engineering》 EI 2023年第1期49-68,共20页
In order to solve the problems of rotor overvoltage,overcurrent and DC side voltage rise caused by grid voltage drops,a coordinated control strategy based on symmetrical and asymmetrical low voltage ride through of ro... In order to solve the problems of rotor overvoltage,overcurrent and DC side voltage rise caused by grid voltage drops,a coordinated control strategy based on symmetrical and asymmetrical low voltage ride through of rotor side converter of the doubly-fed generator is proposed.When the power grid voltage drops symmetrically,the generator approximate equation under steady-state conditions is no longer applicable.Considering the dynamic process of stator current excitation,according to the change of stator flux and the depth of voltage drop,the system can dynamically provide reactive power support for parallel nodes and suppress the rise of DC side voltage and rotor over-current.When the grid voltage drops asymmetrically,the positive and negative sequence components are separated in the rotating coordinate system.The doubly fed generator model is established to suppress the rotor positive sequence current and negative sequence current respectively.At the same time,the output voltage limit of the converter is discussed,and the reference value is adjusted within the allowable output voltage range.In order to adapt to the occurrence of different types of power grid faults and complex operating conditions,a fast switching module of fault type detection and rotor control mode is designed to detect the type of power grid faults and voltage drop depth in real time and switch the rotor side control mode dynamically.Finally,the simulation model of the doubly fed wind turbine is constructed in Matlab/Simulink.The simulation results verify that the proposed control strategy can improve the low-voltage ride through performance of the system when dealing with the symmetrical and asymmetric voltage drop of the power grid and identify the power grid fault type and provide the correct control strategy. 展开更多
关键词 Doubly-fed wind turbines symmetrical faults asymmetrical faults low voltage ride through rotor side control fault type detection
下载PDF
电动汽车用新型模块化聚磁转子永磁电机设计及其对比分析 被引量:2
17
作者 王晶 耿伟伟 +4 位作者 刘东旭 吴彩权 李磊 李强 郭健 《中国电机工程学报》 EI CSCD 北大核心 2024年第3期1184-1194,I0028,共12页
将轮辐型内置式转子和Halbach永磁阵列结合,并取消转子铁心加强筋,减小漏磁达到高聚磁同时兼顾凸极比,实现高转矩/功率密度和宽调速范围。在保证永磁体用量相同的情况下,建立新型高凸极比聚磁转子和V型转子两种电机模型,针对两者的分段... 将轮辐型内置式转子和Halbach永磁阵列结合,并取消转子铁心加强筋,减小漏磁达到高聚磁同时兼顾凸极比,实现高转矩/功率密度和宽调速范围。在保证永磁体用量相同的情况下,建立新型高凸极比聚磁转子和V型转子两种电机模型,针对两者的分段转子拓扑,开展电磁性能对比分析,包括气隙磁密、凸极比、功率以及弱磁扩速能力等。同时,考虑到无转子铁心加强筋会导致转子分段存在结构强度问题,仿真验证新型高凸极比聚磁转子结构在最高转速6000 r/min时给予碳纤维护套保护下转子结构强度的可靠性;分析温度限制下新型高凸极比转子电机的功率输出。另外,对比两种不同电机结构的振动噪声情况。最后,研制一台16极/72槽新型高凸极比转子永磁电机样机,实验验证有限元分析结果的准确性。进一步说明了新型高凸极比转子永磁电机在转矩/功率密度和宽调速运行等方面的性能优势。 展开更多
关键词 聚磁转子 宽调速范围 分段转子 弱磁扩速 碳纤维护套 减小漏磁 高凸极比
下载PDF
阴阳转子型双螺杆结构的实验研究
18
作者 郭树国 韩彦林 +1 位作者 汤霖森 王丽艳 《机械设计与制造》 北大核心 2024年第9期175-179,共5页
为了设计出更加高效的双螺杆,提升挤出膨化机的工作效率;提出了一种引进阴阳转子的非对称双螺杆模型,基于螺旋式的螺杆模型,设计了阴阳转子型双螺杆,与传统双螺杆进行了仿真对比分析,并对新型双螺杆的准确性进行了实验验证;采用SolidWo... 为了设计出更加高效的双螺杆,提升挤出膨化机的工作效率;提出了一种引进阴阳转子的非对称双螺杆模型,基于螺旋式的螺杆模型,设计了阴阳转子型双螺杆,与传统双螺杆进行了仿真对比分析,并对新型双螺杆的准确性进行了实验验证;采用SolidWorks软件建模,利用ANSYS模拟流道数值,求得物料在机筒内的工作状态,分析阴阳转子型双螺杆的宏观压力、速度矢量和速度流线,并研究了不同转速对阴阳转子型双螺杆输送速度和挤出量的影响。研究结果表明:阴阳转子型双螺杆的宏观压力呈递增状态,速度矢量分布不均匀,速度流线混乱,能增加机筒内物料的传输速度,改变物料输送状态,提高物料挤出量。研究结果丰富了双螺杆的研究思路,为高效率挤出膨化机的设计与应用提供了理论依据。 展开更多
关键词 双螺杆 挤出膨化机 阴阳转子 宏观压力 速度矢量
下载PDF
Permanent Magnet Assisted Synchronous Reluctance Motor with Asymmetric Rotor for High Torque Performance
19
作者 Chengwu Diao Wenliang Zhao +1 位作者 Yan Liu Xiuhe Wang 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第2期179-186,共8页
Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel ... Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel PMA-SynRM of asymmetric rotor with position-biased magnet is proposed.The asymmetric rotor design with position-biased magnet realizes the concentration of magnetic field lines in the motor air gap to obtain higher electromagnetic torque,and makes both of magnetic and reluctance torque obtain the peak value at the same current phase angle.The asymmetric rotor configuration is theoretically illustrated by space vector diagram,and the feasibility of high torque performance of the motor is verified.Through the finite element simulation,the effect of the side barrier on output torque and the Mises stress under the rotor asymmetrical design are analyzed.Then the motor characteristics including airgap flux density,back EMF,magnetic torque,reluctance torque,torque ripple,losses,and efficiency are calculated for both the basic and proposed PMA-SynRMs.The results show that the proposed PMA-SynRM has higher torque and efficiency than the basic topology.Moreover,the torque ripple of the proposed PMA-SynRM is reduced by the method with harmonic current injection,and the torque characteristics in the whole current cycle are analyzed.Finally,the endurance to avoid PM demagnetization is confirmed based on the PM remanence calculation. 展开更多
关键词 Permanent magnet assisted synchronous reluctance motor Asymmetric rotor Magnetic torque Reluctance torque Torque ripple
下载PDF
Hybrid URANS/LES Method of Flow Fields in Axial-flow Compressor Rotor Rotor
20
作者 Jia-hao Xiao Ya-ping Ju Chu-hua Zhang 《风机技术》 2023年第6期17-23,85,共8页
Accurate and efficient prediction of the aerodynamic performance and flow details of axial-flow com-pressors is of great engineering application value for the aerodynamic design and flow control of axial-flow compres-... Accurate and efficient prediction of the aerodynamic performance and flow details of axial-flow com-pressors is of great engineering application value for the aerodynamic design and flow control of axial-flow compres-sors.In this work,a delayed detached eddy simulation method is developed and applied to numerically simulate the tur-bulent channel flow and the aerodynamic performance of NASA Rotor 35.Several acceleration techniques including parallel implementation are also used to speed up the iteration convergence.The mean velocity distribution and Reyn-olds stress distribution in the boundary layer of turbulent channel flow and the aerodynamic performance curve of NASA Rotor 35 are predicted.The good agreement between the present delayed detached eddy simulation results and the available direct numerical simulation results or experimental data confirms the effectiveness of the developed meth-od in the accurate and efficient prediction of complex flow in turbomachinery. 展开更多
关键词 Delayed Detached Eddy Simulation Turbulent Channel Flow Axial-flow Compressor rotor Parallel Implementation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部