The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-ga...The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. The mathematical model can be discribed as a coupled system of nonlinear partial differential equations with moving boundary value problem. For a generic case of the three-demensional bounded region, bi this thesis, the effects of gravitation、buoyancy and capillary pressure are considered, we put forward a kind of characteristic finite difference schemes and make use thick and thin grids to form a complete set, and of calculus of vaviations, the change of variable, the theory of prior estimates and techniques, Optimal order estimates in l^2 norm are derived for the error in approximate assumption, Thus we have completely solved the well-known theoretical problem proposed by J. Douglas, Jr.展开更多
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-d...This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.展开更多
Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate ...Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.展开更多
Three Complexes of the formula [Cd (4,4'-bpy)_2 (H_2O)_2]_n. (pic)_(2n) (1) [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n(H_2O)_n (pic)-(2n) (2) and [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n (pic)-(2n)(H_...Three Complexes of the formula [Cd (4,4'-bpy)_2 (H_2O)_2]_n. (pic)_(2n) (1) [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n(H_2O)_n (pic)-(2n) (2) and [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n (pic)-(2n)(H_2O)_n (3) (4.4'-bpy = 4.4'-bipyridine. pic = picric anion ) have been synthesized and characterized by elemental analysis and single-crystal x-ray diffraction. They all have infinite three-dimensional network structure. crystallizing in the monoclinic space group C2/c (1) and Cc (2.3).展开更多
The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and ...The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and moving least squares (MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the later. The rigid movement method was employed to solve the hyper-singular integrations. The 'boundary layer effect', which is the main drawback of the original Hybrid BNM, was overcome by an adaptive integration scheme. The source points of the fundamental solution were arranged directly on the boundary. Thus the uncertain scale factor taken in the regular hybrid boundary node method (RHBNM) can be avoided. Numerical examples for some 3D elastic problems were given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method were studied through the numerical examples.展开更多
3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body...3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.展开更多
Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green func...Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.展开更多
Initiation, growth, and rupture of cerebral aneurysms are caused by hemodynamic factors. It is extensively accepted that the cerebral aneurysm wall is assumed to be rigid using computational fluid dynamics (CFD). Furt...Initiation, growth, and rupture of cerebral aneurysms are caused by hemodynamic factors. It is extensively accepted that the cerebral aneurysm wall is assumed to be rigid using computational fluid dynamics (CFD). Furthermore, fluid-structure interactions have been recently applied for simulation of an elastic cerebral aneurysm model. Herein, we examined cerebral aneurysm hemodynamics in a realistic moving boundary deformation model based on 4-dimensional computed tomographic angiography (4D-CTA) obtained by high time-resolution using numerical simulation. The aneurysm of the realistic moving deformation model based on 4D-CTA at each phase was constructed. The effect of small wall deformation on hemodynamic characteristics might be interested. So, four hemodynamic factors (wall shear stress, wall shear stress divergence, oscillatory shear index and residual residence time) were determined from the numerical simulation, and their behaviors were assessed in the basilar bifurcation aneurysm.展开更多
In the video-based surveillance application, moving shadows can affect the correct localization and detection of moving objects. This paper aims to present a method for shadow detection and suppression used for moving...In the video-based surveillance application, moving shadows can affect the correct localization and detection of moving objects. This paper aims to present a method for shadow detection and suppression used for moving visual object detection. The major novelty of the shadow suppression is the integration of several features including photometric invariant color feature, motion edge feature, and spatial feature etc. By modifying process for false shadow detected, the averaging detection rate of moving object reaches above 90% in the test of Hall-Monitor sequence.展开更多
Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and re- sistance to corrosion fatigue, cracking, etc. Co...Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and re- sistance to corrosion fatigue, cracking, etc. Compressive re- sidual stress and dent profile are important factors to eval- uate the effectiveness of shot peening process. In this pa- per, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of pro- cessing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were de- duced by dimensional analysis method. Secondly, the in- fluence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Fur- thermore, related empirical formulas were given for each di- mensionless parameter based on the simulation results. Fi- nally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this pa- per for analyzing the influence of each individual parameter.展开更多
A baroclinic typhoon model with a moving multi--nested grid is applied in marine environmental forecasts. This paper describes the numerical methods of the model including governing equations, finite differencing, spl...A baroclinic typhoon model with a moving multi--nested grid is applied in marine environmental forecasts. This paper describes the numerical methods of the model including governing equations, finite differencing, split scheme and time integration.展开更多
This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of ...This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of motion are developed based on Lagrange's equations via reproducing kernel particle method (RKPM). For a particular case of a simply supported beam, Galerkin method is also employed to verify the results obtained by RKPM, and a reasonably good agreement is achieved. Variations of the maximum dynamic deflection and bending moment associated with the linear and nonlinear beam theories are investigated in terms of moving mass weight and velocity for various beam boundary conditions. It is demonstrated that for majority of the moving mass velocities, the differences between the results of linear and nonlinear analyses become remarkable as the moving mass weight increases, particularly for high levels of moving mass velocity. Except for the cantilever beam, the nonlinear beam theory predicts higher possibility of moving mass separation from the base beam compared to the linear one. Furthermore, the accuracy levels of the linear beam theory are determined for thin beams under large deflections and small rotations as a function of moving mass weight and velocity in various boundary conditions.展开更多
基金Project supported by the National Scaling Program,the National Eighth-Five-Year Tackling Key Problem Programthe Doctoral Program Foundation of the National Education Commission
文摘The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. The mathematical model can be discribed as a coupled system of nonlinear partial differential equations with moving boundary value problem. For a generic case of the three-demensional bounded region, bi this thesis, the effects of gravitation、buoyancy and capillary pressure are considered, we put forward a kind of characteristic finite difference schemes and make use thick and thin grids to form a complete set, and of calculus of vaviations, the change of variable, the theory of prior estimates and techniques, Optimal order estimates in l^2 norm are derived for the error in approximate assumption, Thus we have completely solved the well-known theoretical problem proposed by J. Douglas, Jr.
基金supported by the National Natural Science Foundation of China (Grants 11571223, 51404160)Shanxi Province Science Foundation for Youths (Grant 2014021025-1)
文摘This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.
基金supported by the National Natural Science Foundation of China (10872096)the Open Fund of State Key Laboratory of Explosion Science and Technology, Beijing University of Science and Technology (KFJJ09-13)
文摘Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.
基金National Natural Science Foundation of ChinaNatural Science Foundation of Guangxi
文摘Three Complexes of the formula [Cd (4,4'-bpy)_2 (H_2O)_2]_n. (pic)_(2n) (1) [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n(H_2O)_n (pic)-(2n) (2) and [Zn (4,4'-bpy)_2 (H_2O)]_n (4,4'-bpy)_n (pic)-(2n)(H_2O)_n (3) (4.4'-bpy = 4.4'-bipyridine. pic = picric anion ) have been synthesized and characterized by elemental analysis and single-crystal x-ray diffraction. They all have infinite three-dimensional network structure. crystallizing in the monoclinic space group C2/c (1) and Cc (2.3).
基金Project supported by the Program of the Key Laboratory of Rock and Soil Mechanics of Chinese Academy of Sciences (No.Z110507)
文摘The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and moving least squares (MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the later. The rigid movement method was employed to solve the hyper-singular integrations. The 'boundary layer effect', which is the main drawback of the original Hybrid BNM, was overcome by an adaptive integration scheme. The source points of the fundamental solution were arranged directly on the boundary. Thus the uncertain scale factor taken in the regular hybrid boundary node method (RHBNM) can be avoided. Numerical examples for some 3D elastic problems were given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method were studied through the numerical examples.
基金item of significant subject construction in Shanghai
文摘3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.
基金Project supported by the National Natural Science Foundation of China (No. 50776097)
文摘Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.
文摘Initiation, growth, and rupture of cerebral aneurysms are caused by hemodynamic factors. It is extensively accepted that the cerebral aneurysm wall is assumed to be rigid using computational fluid dynamics (CFD). Furthermore, fluid-structure interactions have been recently applied for simulation of an elastic cerebral aneurysm model. Herein, we examined cerebral aneurysm hemodynamics in a realistic moving boundary deformation model based on 4-dimensional computed tomographic angiography (4D-CTA) obtained by high time-resolution using numerical simulation. The aneurysm of the realistic moving deformation model based on 4D-CTA at each phase was constructed. The effect of small wall deformation on hemodynamic characteristics might be interested. So, four hemodynamic factors (wall shear stress, wall shear stress divergence, oscillatory shear index and residual residence time) were determined from the numerical simulation, and their behaviors were assessed in the basilar bifurcation aneurysm.
文摘In the video-based surveillance application, moving shadows can affect the correct localization and detection of moving objects. This paper aims to present a method for shadow detection and suppression used for moving visual object detection. The major novelty of the shadow suppression is the integration of several features including photometric invariant color feature, motion edge feature, and spatial feature etc. By modifying process for false shadow detected, the averaging detection rate of moving object reaches above 90% in the test of Hall-Monitor sequence.
基金supported by the National Natural Science Foun-dation of China (10972228,11002150,and 91016025)the Basic Research Equipment Project of Chinese Academy of Sciences(YZ200930)
文摘Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and re- sistance to corrosion fatigue, cracking, etc. Compressive re- sidual stress and dent profile are important factors to eval- uate the effectiveness of shot peening process. In this pa- per, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of pro- cessing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were de- duced by dimensional analysis method. Secondly, the in- fluence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Fur- thermore, related empirical formulas were given for each di- mensionless parameter based on the simulation results. Fi- nally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this pa- per for analyzing the influence of each individual parameter.
基金supported by the Chinese National Research Program of Science and Technology under Project! 85-903-03-04.
文摘A baroclinic typhoon model with a moving multi--nested grid is applied in marine environmental forecasts. This paper describes the numerical methods of the model including governing equations, finite differencing, split scheme and time integration.
文摘This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of motion are developed based on Lagrange's equations via reproducing kernel particle method (RKPM). For a particular case of a simply supported beam, Galerkin method is also employed to verify the results obtained by RKPM, and a reasonably good agreement is achieved. Variations of the maximum dynamic deflection and bending moment associated with the linear and nonlinear beam theories are investigated in terms of moving mass weight and velocity for various beam boundary conditions. It is demonstrated that for majority of the moving mass velocities, the differences between the results of linear and nonlinear analyses become remarkable as the moving mass weight increases, particularly for high levels of moving mass velocity. Except for the cantilever beam, the nonlinear beam theory predicts higher possibility of moving mass separation from the base beam compared to the linear one. Furthermore, the accuracy levels of the linear beam theory are determined for thin beams under large deflections and small rotations as a function of moving mass weight and velocity in various boundary conditions.