In this paper,the Cauchy problem for the two layer viscous shallow water equations is investigated with third-order surface-tension terms and a low regularity assumption on the initial data.The global existence and un...In this paper,the Cauchy problem for the two layer viscous shallow water equations is investigated with third-order surface-tension terms and a low regularity assumption on the initial data.The global existence and uniqueness of the strong solution in a hybrid Besov space are proved by using the Littlewood-Paley decomposition and Friedrichs'regularization method.展开更多
For a two layered coalbed system in possession of the slightly permeable interlayer, a mathematical model was established to describe the methane and water flows between coal seams and the internal migration and the d...For a two layered coalbed system in possession of the slightly permeable interlayer, a mathematical model was established to describe the methane and water flows between coal seams and the internal migration and the distribution of fluids in a slightly permeable interlayer. Meanwhile, this model has included the potential effect of matrix shrinkage associated with desorption on the coal permeability. The numerical results were obtained by the finite difference method, and then the production forecasts for the two layered coalbed system were conducted in combination with the geological data of a certain area in the Qinshui Basin. Through analyzing the internal migration and distribution of fluids in the slightly permeable interlayer and its effect on the coalbed methane well production, the results indicate that the prediction of the gas production rate and the cumulative gas production will be higher if the permeability of the interlayer is neglected. Furthermore, it is also found that the matrix shrinkage could produce an effect on the coal permeability, thus affecting the production performance.展开更多
The penetration depth of torpedo anchor in two-layered soil bed was experimentally investigated. A total of 177 experimental data were obtained in laboratory by varying the undrained shear strength of the two-layered ...The penetration depth of torpedo anchor in two-layered soil bed was experimentally investigated. A total of 177 experimental data were obtained in laboratory by varying the undrained shear strength of the two-layered soil and the thickness of the top soil layer. The geometric parameters of the anchor and the soil properties(the liquid limit, plastic limit, specific gravity, undrained shear strength, density, and water content) were measured. Based on the energy analysis and present test data, an empirical formula to predict the penetration depth of torpedo anchor in two-layered soil bed was proposed. The proposed formula was extensively validated by laboratory and field data of previous researchers. The results were in good agreement with those obtained for two-layered and single-layered soil bed.Finally, a sensitivity analysis on the parameters in the formula was performed.展开更多
A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the correspon...A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.展开更多
In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of th...In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness dl, and lower layer thick-ness d2, instead of only one parameter-water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Mehaute's plot for free surface waves if water depth ratio r= d1/d2 approaches to infinity and the upper layer water density p1 to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of σ=(P2 - Pl)/P2 → 1.0 and r 〉 1.0. In the end, several figures of the validity ranges for various interfacial wavetheories in the two-layer fluid are given and compared with the results for surface waves.展开更多
The hydroelastic response of a circular, very large floating structure(VLFS), idealized as a floating circular elastic thin plate, is investigated for the case of time-harmonic incident waves of the surface and interf...The hydroelastic response of a circular, very large floating structure(VLFS), idealized as a floating circular elastic thin plate, is investigated for the case of time-harmonic incident waves of the surface and interfacial wave modes, of a given wave frequency, on a two-layer fluid of finite and constant depth. In linear potential-flow theory, with the aid of angular eigenfunction expansions, the diffraction potentials can be expressed by the Bessel functions. A system of simultaneous equations is derived by matching the velocity and the pressure between the open-water and the platecovered regions, while incorporating the edge conditions of the plate. Then the complex nested series are simplified by utilizing the orthogonality of the vertical eigenfunctions in the open-water region. Numerical computations are presented to investigate the effects of different physical quantities, such as the thickness of the plate, Young’s modulus, the ratios of the densities and of the layer depths, on the dispersion relations of the flexural-gravity waves for the two-layer fluid. Rapid convergence of the method is observed, but is slower at higher wave frequency. At high frequency, it is found that there is some energy transferred from the interfacial mode to the surface mode.展开更多
Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the Study of the surface waves. One approach was used by Nw...Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the Study of the surface waves. One approach was used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) to improve the linear dispersion characteristics of the classical Boussinesq equations by using the velocity at an arbitrary level as the velocity variable in derived equations and obtain a new form of Boussinesq-type equations, in which the dispersion property can be optimized by choosing the velocity variable at an adequate level. In this paper, a set of Boussinesq-type equations describing the motions of the interracial waves propagating alone the interface between two homogeneous incompressible and inviscid fluids of different densities with a free surface and a variable water depth were derived using a method similar to that used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) for surface waves. The equations were expressed in terms of the displacements of free surface and density-interface, and the velocity vectors at arbitrary vertical locations in the upper layer and the lower layer (or depth-averaged velocity vector across each layer) of a two-layer fluid. As expected, the equations derived in the present work include as special cases those obtained by Nwogu (1993, J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) and Peregrine (1967, J. Fluid Mech. 27, 815-827) for surface waves when the density of the upper fluid is taken as zero.展开更多
A quite general coupled variable coefficient modified KdV (VCmKdV) equation in a two-layer fluid systemis derived by means of the reductive perturbation method.Making use of the CK's direct method,some similarityr...A quite general coupled variable coefficient modified KdV (VCmKdV) equation in a two-layer fluid systemis derived by means of the reductive perturbation method.Making use of the CK's direct method,some similarityreductions of the coupled VCmKdV equation are obtained and their corresponding group explanations are discussed.Some exact solutions of the coupled equations are also presented.展开更多
In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer fluid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder ...In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer fluid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder are obtained by use of the method of eigenfunction expansions. The hydrodynamic loads on the vertically floating cylinder in a two-layer fluid inelude not only the surge, heave and pitch exciting forces due to the incident wave of the surface-wave mode, but also those due to the incident wave of the internal-wave mode. This is different from the case of a homogenous fluid. Some given examples show that, for a two-layer fluid system with a small density difference, the hydrodynamic loads for the surface-wave mode do not differ significantly from those due to surface waves in a single-layer fluid, but the hydrodynamic loads for the internal-wave mode are important over a wide range of frequencies. Moreover, also considered are the free surface and interface elevations generated by the diffraction wave due to the incident wave of the surface-wave and interhal-wave modes, and transfer of energy between modes.展开更多
Rayleigh-Marangoni-Bénard instability in a system of two-layer fluids is studied nu- merically.The convective instabilities in the system of Silicon Oil(10cSt)and Fluorinert(FC70)liquids have been analyzed.The cr...Rayleigh-Marangoni-Bénard instability in a system of two-layer fluids is studied nu- merically.The convective instabilities in the system of Silicon Oil(10cSt)and Fluorinert(FC70)liquids have been analyzed.The critical parameters at onset of convection are presented in a large range of two-layer depth ratios from 0.2 to 5.0.Numerical results show that the instability of the two-layer system depends strongly on its depth ratio.When the depth ratio increases,the instability mode changes from mechanical coupling to thermal coupling.Between these two typical coupling modes, a time-dependent oscillation is detected.Nevertheless,traveling wave states are found in the case of oscillatory instability.The oscillation mode results from the competition between Rayleigh instability and Marangoni effect.展开更多
The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the fr...The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the free surface and the interface. This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating. The source point is located either in the upper or lower part of a two-layer fluid of finite depth. The derivation is carried out by the method of singularities. This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present. Furthermore, experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results. Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower, for each case. The effect of the density on the internal waves is demonstrated. Also, it is shown how the surface and internal wave amplitudes are compared for both the wave modes. The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.展开更多
A previous study (Song. 2004. Geophys Res Lett, 31 (15):L15302) of the second-order solutions for random interracial waves is extended in a constant depth, two-layer fluid system with a rigid lid is extended into...A previous study (Song. 2004. Geophys Res Lett, 31 (15):L15302) of the second-order solutions for random interracial waves is extended in a constant depth, two-layer fluid system with a rigid lid is extended into a more general case of two-layer fluid with a top free surface. The rigid boundary condition on the upper surface is replaced by the kinematical and dynamical boundary conditions of a free surface, and the equations describing the random displacements of free surface, density-interface and the associated velocity potentials in the two-layer fluid are solved to the second order using the same expansion technology as that of Song (2004. Geophys Res Lett, 31 (15):L15302). The results show that the interface and the surface will oscillate synchronously, and the wave fields to the first-order both at the free surface and at the density-interface are made up of a linear superposition of many waves with different amplitudes, wave numbers and frequencies. The second-order solutions describe the second-order wave-wave interactions of the surface wave components, the interface wave components and among the surface and the interface wave components. The extended solutions also include special cases obtained by Thorpe for progressive interracial waves (Thorpe. 1968a.Trans R Soc London, 263A:563~614) and standing interracial waves (Thorpe. 1968b. J Fluid Mech, 32:489-528) for the two-layer fluid with a top free surface. Moreover, the solutions reduce to those derived for random surface waves by Sharma and Dean (1979.Ocean Engineering Rep 20) if the density of the upper layer is much smaller than that of the lower layer.展开更多
Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer fluid with a top free surface and a fiat bottom. The solutions were deduced from the general form of ...Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer fluid with a top free surface and a fiat bottom. The solutions were deduced from the general form of linear fluid dynamic equations of two-layer fluid under the f-plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected, the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Ser. D, 47(12): 1147-1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if the density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the influence of the earth's rotation both on the surface wave solutions and the interfacial wave solutions should be considered.展开更多
Electromagnetic (EM) scattering from a stack of two rough interfaces separating a homogeneous medium with a perfectly electric conducting (PEC) object has been calculated through the method of moments for vertical...Electromagnetic (EM) scattering from a stack of two rough interfaces separating a homogeneous medium with a perfectly electric conducting (PEC) object has been calculated through the method of moments for vertical polarization. Theoretical formulations of EM scattering from multi-layered rough interfaces with a PEC object have been derived in detail and the total fields and their normal derivatives on the rough interfaces are solved. The two-layered model is a special case. In this work, a Gaussian rough surface was applied to simulate the rough interface. A cylinder was located above, between or below the two-layered rough interfaces. Through numerical simulations, the validity of this work is demonstrated by comparing it with existing scattering models, which are special cases that include a PEC object located above/below a single-layered rough interface and two-layered rough interfaces without an object. Subsequently, the influences of characteristic parameters, such as the relative permittivity of the medium, as well as the average height between the two rough surfaces, on the bistatic scattering coefficient are discussed.展开更多
Electromagnetic wave scattering from multilayers consisting of two two-layer Caussian rough surfaces with lossless media is investigated in the Kirchhoff approximation (KA), with consideration of the shadowing effec...Electromagnetic wave scattering from multilayers consisting of two two-layer Caussian rough surfaces with lossless media is investigated in the Kirchhoff approximation (KA), with consideration of the shadowing effects. The tapered incident wave is introduced into the classic KA, and the bistatic scattering coefficient is redetermined. The advantage of this method is that it is faster in computation than the exact numerical methods. The numerical results show that the bistatic scattering coefficient calculated in the KA is in good agreement with that obtained by using the method of moment (MOM) over a most angular range, which indicates the validity of the KA proposed in our paper. Finally, the effects of the relative permittivity, the root-mean-square (RMS) height, the correlative length, and the average height between the two interfaces on the bistatic scattering coefficient are discussed in detail.展开更多
Multilayer network is a frontier direction of network science research. In this paper, the cluster ring network is extended to a two-layer network model, and the inner structures of the cluster blocks are random, smal...Multilayer network is a frontier direction of network science research. In this paper, the cluster ring network is extended to a two-layer network model, and the inner structures of the cluster blocks are random, small world or scale-free. We study the influence of network scale, the interlayer linking weight and interlayer linking fraction on synchronizability. It is found that the synchronizability of the two-layer cluster ring network decreases with the increase of network size. There is an optimum value of the interlayer linking weight in the two-layer cluster ring network, which makes the synchronizability of the network reach the optimum. When the interlayer linking weight and the interlayer linking fraction are very small, the change of them will affect the synchronizability.展开更多
Alternating-current losses in a two-layer superconducting cable, each layer being composed of 15 closely-spaced rectangular wires made up of second-generation superconductors when the ends of wires are coated by eithe...Alternating-current losses in a two-layer superconducting cable, each layer being composed of 15 closely-spaced rectangular wires made up of second-generation superconductors when the ends of wires are coated by either a non-magnetic or strong ferromagnetic material having a U profile is numerically investigated. Computations are carried out through the finite-element method. The alternating-current losses do not increase significantly if the relative permeability of the coating is increased three orders of magnitude, provided that the current amplitude is less than half of the critical current in a superconducting wire. However, the losses are much higher for ferromagnetic coating if the amplitude of the applied current oscillating at 50 Hz is close to the critical current. The ferromagnetic coating is seen to accumulate the magnetic field lines normally on its surfaces, while the field lines are parallel to the long axes of the wires, leading to more significant flux penetration in the coated regions. This facilitates a uniform low-loss current flow in the uncoated regions of the wires. In contrast, coating with a non-magnetic material gives rise to a considerably smaller current flow in the uncoated regions, whereas the low-loss flow is maintained in the coated regions. Moreover, the current flows in opposite directions in the coated and uncoated regions, where the direction in each region is converse for the two materials.展开更多
Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh...Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh form and excellent rigidity. In order to further understand the buckling behaviors of single layer two-way grid cylindrical shell roof with tension members,the buckling experiments have been undertaken to investigate the effect of tension members,in either out-of-plane or in-plane placement. A single layer two-way grid cylindrical shell roof with out-of-plane tension members has been tested under symmetric and asymmetric loading. The tension member placement,the introducing initial axial force to tension members and the load patterns are considered to investigate the buckling behavior. Experimental results indicate that four long out-ofplane tension members work well under symmetrical loading,but only two long out-of-plane tension members work under asymmetrical loading. It can be concluded that the PC bar members used as tension members for this study are useful in the construction of a single layer two-way grid cylindrical shell roof with structural members intersecting at small angles.展开更多
Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moi...Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moisture stabilities.In particular, the 2D perovskite devices have shown better promise for optoelectronic applications.However, tunability of optoelectronic properties is often demanded to improve the device performance.Herein, we adopt a newly method to tune the electronic properties of 2D perovskite by introducing pseudohalide into the structure.In this work, we designed a pseudohalidesubstituted 2D perovskite by substituting the out-of-plane halide with pseudohalide and studied the electronic and excitonic properties of 2D-BA2MX4 and 2D-BA2MX2Ps2(M=Ge^(2+), Sn^(2+), and Pb^(2+);X=I;Ps=NCO, NCS, OCN, SCN, Se CN).We revealed the dependence of electronic properties including band gaps, composition of band edges, bonding characteristics, work functions, effective masses, and exciton binding energies on different pseudohalides substituted in 2D perovskite.Our results indicate that the substitution of pseudohalide in 2D perovskites is energetically favorable and can significantly affect the bonding characteristics as well as the CBM and VBM that often play major role in determining their performance in optoelectronic devices.It is expected that the pseudohalide substitution will be helpful in developing more advanced optoelectronic device based on 2D perovskite by optimizing band alignment and promoting charge extraction.展开更多
When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant dens...When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant density is considered,and a variant of the edge-based non-hydrostatic numerical scheme is formulated. The resulting scheme is very efficient since it resolves the vertical fluid depth only in two layers. Despite using just two layers, the numerical dispersion is shown to agree with the analytical dispersion curves over a wide range of kd, where k is the wave number and d the water depth. The scheme was tested by simulating an interfacial solitary wave propagating over a flat bottom, as well as over a bottom step. On a laboratory scale, the formation of an interfacial wave is simulated,which also shows the interaction of wave with a triangular bathymetry. Then, a case study using the Lombok Strait topography is discussed, and the results show the development of an interfacial wave due to a strong current passing through a sill.展开更多
基金the NSFC(11571046,11671225)the ISF-NSFC joint research program NSFC(11761141008)the BJNSF(1182004)。
文摘In this paper,the Cauchy problem for the two layer viscous shallow water equations is investigated with third-order surface-tension terms and a low regularity assumption on the initial data.The global existence and uniqueness of the strong solution in a hybrid Besov space are proved by using the Littlewood-Paley decomposition and Friedrichs'regularization method.
基金supported by the National High Technology Research and Development Program of China (863 Program,Grant No.2006AA06Z236)the National Basic Research Program of China (973 Program,Grant No.2009CB219606)the National Natural Science Foundation of China (Grant No.40974056)
文摘For a two layered coalbed system in possession of the slightly permeable interlayer, a mathematical model was established to describe the methane and water flows between coal seams and the internal migration and the distribution of fluids in a slightly permeable interlayer. Meanwhile, this model has included the potential effect of matrix shrinkage associated with desorption on the coal permeability. The numerical results were obtained by the finite difference method, and then the production forecasts for the two layered coalbed system were conducted in combination with the geological data of a certain area in the Qinshui Basin. Through analyzing the internal migration and distribution of fluids in the slightly permeable interlayer and its effect on the coalbed methane well production, the results indicate that the prediction of the gas production rate and the cumulative gas production will be higher if the permeability of the interlayer is neglected. Furthermore, it is also found that the matrix shrinkage could produce an effect on the coal permeability, thus affecting the production performance.
基金financially supported by the Ministry of Education of China(Grant No.6141A02022337)
文摘The penetration depth of torpedo anchor in two-layered soil bed was experimentally investigated. A total of 177 experimental data were obtained in laboratory by varying the undrained shear strength of the two-layered soil and the thickness of the top soil layer. The geometric parameters of the anchor and the soil properties(the liquid limit, plastic limit, specific gravity, undrained shear strength, density, and water content) were measured. Based on the energy analysis and present test data, an empirical formula to predict the penetration depth of torpedo anchor in two-layered soil bed was proposed. The proposed formula was extensively validated by laboratory and field data of previous researchers. The results were in good agreement with those obtained for two-layered and single-layered soil bed.Finally, a sensitivity analysis on the parameters in the formula was performed.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB403501)the National Natural Science Foundation of China (GrantNos. 41175058,41275062,and 11202106)
文摘A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.
基金the Knowledge Innovation Project of CAS(KJCX-YW-L02)the National 863 Project of China(2006AAO9A103-4)+1 种基金China National Oil Corporation in Beijing(CNOOC)the National Natural Science Foundation of China(10672056).
文摘In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness dl, and lower layer thick-ness d2, instead of only one parameter-water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Mehaute's plot for free surface waves if water depth ratio r= d1/d2 approaches to infinity and the upper layer water density p1 to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of σ=(P2 - Pl)/P2 → 1.0 and r 〉 1.0. In the end, several figures of the validity ranges for various interfacial wavetheories in the two-layer fluid are given and compared with the results for surface waves.
基金sponsored by the National Basic Research Program of China(973 Program,Grant No.2014CB046203)the National Natural Science Foundation of China(Grant No.11072140)
文摘The hydroelastic response of a circular, very large floating structure(VLFS), idealized as a floating circular elastic thin plate, is investigated for the case of time-harmonic incident waves of the surface and interfacial wave modes, of a given wave frequency, on a two-layer fluid of finite and constant depth. In linear potential-flow theory, with the aid of angular eigenfunction expansions, the diffraction potentials can be expressed by the Bessel functions. A system of simultaneous equations is derived by matching the velocity and the pressure between the open-water and the platecovered regions, while incorporating the edge conditions of the plate. Then the complex nested series are simplified by utilizing the orthogonality of the vertical eigenfunctions in the open-water region. Numerical computations are presented to investigate the effects of different physical quantities, such as the thickness of the plate, Young’s modulus, the ratios of the densities and of the layer depths, on the dispersion relations of the flexural-gravity waves for the two-layer fluid. Rapid convergence of the method is observed, but is slower at higher wave frequency. At high frequency, it is found that there is some energy transferred from the interfacial mode to the surface mode.
文摘Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the Study of the surface waves. One approach was used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) to improve the linear dispersion characteristics of the classical Boussinesq equations by using the velocity at an arbitrary level as the velocity variable in derived equations and obtain a new form of Boussinesq-type equations, in which the dispersion property can be optimized by choosing the velocity variable at an adequate level. In this paper, a set of Boussinesq-type equations describing the motions of the interracial waves propagating alone the interface between two homogeneous incompressible and inviscid fluids of different densities with a free surface and a variable water depth were derived using a method similar to that used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) for surface waves. The equations were expressed in terms of the displacements of free surface and density-interface, and the velocity vectors at arbitrary vertical locations in the upper layer and the lower layer (or depth-averaged velocity vector across each layer) of a two-layer fluid. As expected, the equations derived in the present work include as special cases those obtained by Nwogu (1993, J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) and Peregrine (1967, J. Fluid Mech. 27, 815-827) for surface waves when the density of the upper fluid is taken as zero.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10547124,10475055,and 90503006the Youth Foundation of Shanghai Jiao Tong University
文摘A quite general coupled variable coefficient modified KdV (VCmKdV) equation in a two-layer fluid systemis derived by means of the reductive perturbation method.Making use of the CK's direct method,some similarityreductions of the coupled VCmKdV equation are obtained and their corresponding group explanations are discussed.Some exact solutions of the coupled equations are also presented.
基金This project was financially supported by the National Natural Science Foundation of China(Grant No.10572092)the High Technology Research and Development Programof China(863Program,Grant Nos.2006AA09Z352 and 2006AA09196-6)
文摘In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer fluid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder are obtained by use of the method of eigenfunction expansions. The hydrodynamic loads on the vertically floating cylinder in a two-layer fluid inelude not only the surge, heave and pitch exciting forces due to the incident wave of the surface-wave mode, but also those due to the incident wave of the internal-wave mode. This is different from the case of a homogenous fluid. Some given examples show that, for a two-layer fluid system with a small density difference, the hydrodynamic loads for the surface-wave mode do not differ significantly from those due to surface waves in a single-layer fluid, but the hydrodynamic loads for the internal-wave mode are important over a wide range of frequencies. Moreover, also considered are the free surface and interface elevations generated by the diffraction wave due to the incident wave of the surface-wave and interhal-wave modes, and transfer of energy between modes.
基金The project supported by the National Natural Science Foundation of China (10372105) and the Knowledge Innovation Program of Chinese Academy of Sciences (KJCX2-SW-L05)
文摘Rayleigh-Marangoni-Bénard instability in a system of two-layer fluids is studied nu- merically.The convective instabilities in the system of Silicon Oil(10cSt)and Fluorinert(FC70)liquids have been analyzed.The critical parameters at onset of convection are presented in a large range of two-layer depth ratios from 0.2 to 5.0.Numerical results show that the instability of the two-layer system depends strongly on its depth ratio.When the depth ratio increases,the instability mode changes from mechanical coupling to thermal coupling.Between these two typical coupling modes, a time-dependent oscillation is detected.Nevertheless,traveling wave states are found in the case of oscillatory instability.The oscillation mode results from the competition between Rayleigh instability and Marangoni effect.
基金supported by the National Natural Science Foundation of China (Grant No. 50779008)
文摘The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the free surface and the interface. This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating. The source point is located either in the upper or lower part of a two-layer fluid of finite depth. The derivation is carried out by the method of singularities. This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present. Furthermore, experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results. Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower, for each case. The effect of the density on the internal waves is demonstrated. Also, it is shown how the surface and internal wave amplitudes are compared for both the wave modes. The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.
基金supported by the National Science Foundation for Distinguished Young Scholars of China under contract No.40425015the Cooperative Project of Chinese Academy Sciences and the China National 0ffshore 0il Corporation("Behaviours of internal waves and their roles on the marine stuctures").
文摘A previous study (Song. 2004. Geophys Res Lett, 31 (15):L15302) of the second-order solutions for random interracial waves is extended in a constant depth, two-layer fluid system with a rigid lid is extended into a more general case of two-layer fluid with a top free surface. The rigid boundary condition on the upper surface is replaced by the kinematical and dynamical boundary conditions of a free surface, and the equations describing the random displacements of free surface, density-interface and the associated velocity potentials in the two-layer fluid are solved to the second order using the same expansion technology as that of Song (2004. Geophys Res Lett, 31 (15):L15302). The results show that the interface and the surface will oscillate synchronously, and the wave fields to the first-order both at the free surface and at the density-interface are made up of a linear superposition of many waves with different amplitudes, wave numbers and frequencies. The second-order solutions describe the second-order wave-wave interactions of the surface wave components, the interface wave components and among the surface and the interface wave components. The extended solutions also include special cases obtained by Thorpe for progressive interracial waves (Thorpe. 1968a.Trans R Soc London, 263A:563~614) and standing interracial waves (Thorpe. 1968b. J Fluid Mech, 32:489-528) for the two-layer fluid with a top free surface. Moreover, the solutions reduce to those derived for random surface waves by Sharma and Dean (1979.Ocean Engineering Rep 20) if the density of the upper layer is much smaller than that of the lower layer.
基金supported by the National Science Fund for Distinguished Young Scholars of China undercontract No 40425015 the Knowledge Innovation Programs of the Chinese Academy of Sciences under contract Nos KZCX1-YW-12and KZCX2-YW-201
文摘Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer fluid with a top free surface and a fiat bottom. The solutions were deduced from the general form of linear fluid dynamic equations of two-layer fluid under the f-plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected, the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Ser. D, 47(12): 1147-1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if the density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the influence of the earth's rotation both on the surface wave solutions and the interfacial wave solutions should be considered.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971067)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100203110016)the Fundamental Research Funds for the Central Universities,China (Grant No. K50510070001)
文摘Electromagnetic (EM) scattering from a stack of two rough interfaces separating a homogeneous medium with a perfectly electric conducting (PEC) object has been calculated through the method of moments for vertical polarization. Theoretical formulations of EM scattering from multi-layered rough interfaces with a PEC object have been derived in detail and the total fields and their normal derivatives on the rough interfaces are solved. The two-layered model is a special case. In this work, a Gaussian rough surface was applied to simulate the rough interface. A cylinder was located above, between or below the two-layered rough interfaces. Through numerical simulations, the validity of this work is demonstrated by comparing it with existing scattering models, which are special cases that include a PEC object located above/below a single-layered rough interface and two-layered rough interfaces without an object. Subsequently, the influences of characteristic parameters, such as the relative permittivity of the medium, as well as the average height between the two rough surfaces, on the bistatic scattering coefficient are discussed.
基金supported by the National Natural Science Foundation of China (Grant No 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No 20070701010)
文摘Electromagnetic wave scattering from multilayers consisting of two two-layer Caussian rough surfaces with lossless media is investigated in the Kirchhoff approximation (KA), with consideration of the shadowing effects. The tapered incident wave is introduced into the classic KA, and the bistatic scattering coefficient is redetermined. The advantage of this method is that it is faster in computation than the exact numerical methods. The numerical results show that the bistatic scattering coefficient calculated in the KA is in good agreement with that obtained by using the method of moment (MOM) over a most angular range, which indicates the validity of the KA proposed in our paper. Finally, the effects of the relative permittivity, the root-mean-square (RMS) height, the correlative length, and the average height between the two interfaces on the bistatic scattering coefficient are discussed in detail.
文摘Multilayer network is a frontier direction of network science research. In this paper, the cluster ring network is extended to a two-layer network model, and the inner structures of the cluster blocks are random, small world or scale-free. We study the influence of network scale, the interlayer linking weight and interlayer linking fraction on synchronizability. It is found that the synchronizability of the two-layer cluster ring network decreases with the increase of network size. There is an optimum value of the interlayer linking weight in the two-layer cluster ring network, which makes the synchronizability of the network reach the optimum. When the interlayer linking weight and the interlayer linking fraction are very small, the change of them will affect the synchronizability.
基金Project supported by the Fund from the Scientific and Technological Research Council of Turkey(TüB˙ITAK)(Grant No.110T876)
文摘Alternating-current losses in a two-layer superconducting cable, each layer being composed of 15 closely-spaced rectangular wires made up of second-generation superconductors when the ends of wires are coated by either a non-magnetic or strong ferromagnetic material having a U profile is numerically investigated. Computations are carried out through the finite-element method. The alternating-current losses do not increase significantly if the relative permeability of the coating is increased three orders of magnitude, provided that the current amplitude is less than half of the critical current in a superconducting wire. However, the losses are much higher for ferromagnetic coating if the amplitude of the applied current oscillating at 50 Hz is close to the critical current. The ferromagnetic coating is seen to accumulate the magnetic field lines normally on its surfaces, while the field lines are parallel to the long axes of the wires, leading to more significant flux penetration in the coated regions. This facilitates a uniform low-loss current flow in the uncoated regions of the wires. In contrast, coating with a non-magnetic material gives rise to a considerably smaller current flow in the uncoated regions, whereas the low-loss flow is maintained in the coated regions. Moreover, the current flows in opposite directions in the coated and uncoated regions, where the direction in each region is converse for the two materials.
基金Sponsored by the Postdoctoral Science Foundation of China(Grant No.2015M571422)Heilongjiang Province Postdoctoral Science Foundation(Grant No.LBH-Z14095)"Young Talents"Project of Northeast Agricultural University(Grant No.14QC50)
文摘Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh form and excellent rigidity. In order to further understand the buckling behaviors of single layer two-way grid cylindrical shell roof with tension members,the buckling experiments have been undertaken to investigate the effect of tension members,in either out-of-plane or in-plane placement. A single layer two-way grid cylindrical shell roof with out-of-plane tension members has been tested under symmetric and asymmetric loading. The tension member placement,the introducing initial axial force to tension members and the load patterns are considered to investigate the buckling behavior. Experimental results indicate that four long out-ofplane tension members work well under symmetrical loading,but only two long out-of-plane tension members work under asymmetrical loading. It can be concluded that the PC bar members used as tension members for this study are useful in the construction of a single layer two-way grid cylindrical shell roof with structural members intersecting at small angles.
基金funded by the National Key Research and Development Program of China (2017YFA0204800/2016YFA0202403)the Fundamental Research Funds for the Central Universities (2018CBLZ006)+5 种基金the National Natural Science Foundation of China (61604091 and 61674098)the 111 Project (B14041)the Changjiang Scholar and Innovative Research Team (IRT_14R33)the Chinese National 1000 Talents Plan program (1110010341)the China Postdoctoral Science foundation (2018M633455)the Fundamental Research Funds for the Central Universities (GK201903055)
文摘Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moisture stabilities.In particular, the 2D perovskite devices have shown better promise for optoelectronic applications.However, tunability of optoelectronic properties is often demanded to improve the device performance.Herein, we adopt a newly method to tune the electronic properties of 2D perovskite by introducing pseudohalide into the structure.In this work, we designed a pseudohalidesubstituted 2D perovskite by substituting the out-of-plane halide with pseudohalide and studied the electronic and excitonic properties of 2D-BA2MX4 and 2D-BA2MX2Ps2(M=Ge^(2+), Sn^(2+), and Pb^(2+);X=I;Ps=NCO, NCS, OCN, SCN, Se CN).We revealed the dependence of electronic properties including band gaps, composition of band edges, bonding characteristics, work functions, effective masses, and exciton binding energies on different pseudohalides substituted in 2D perovskite.Our results indicate that the substitution of pseudohalide in 2D perovskites is energetically favorable and can significantly affect the bonding characteristics as well as the CBM and VBM that often play major role in determining their performance in optoelectronic devices.It is expected that the pseudohalide substitution will be helpful in developing more advanced optoelectronic device based on 2D perovskite by optimizing band alignment and promoting charge extraction.
基金financially supported by the Institut Teknologi Bandung Research(Grant No.107a/I1.C01/PL/2017)
文摘When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant density is considered,and a variant of the edge-based non-hydrostatic numerical scheme is formulated. The resulting scheme is very efficient since it resolves the vertical fluid depth only in two layers. Despite using just two layers, the numerical dispersion is shown to agree with the analytical dispersion curves over a wide range of kd, where k is the wave number and d the water depth. The scheme was tested by simulating an interfacial solitary wave propagating over a flat bottom, as well as over a bottom step. On a laboratory scale, the formation of an interfacial wave is simulated,which also shows the interaction of wave with a triangular bathymetry. Then, a case study using the Lombok Strait topography is discussed, and the results show the development of an interfacial wave due to a strong current passing through a sill.