A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well...A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.展开更多
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas...The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.展开更多
On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness...On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness,nonuniform material properties.This work develops for the first time a method that uses ultrasound echo groups and artificial neural network(ANN)for reliable on-site real-time identification of material parameters.The use of echo groups allows the use of lower frequencies,and hence more accommodative to structural complexity.To train the ANNs,a numerical model is established that is capable of computing the waveform of ultrasonic echo groups for any given set of material properties of a given structure.The waveform of an ultrasonic echo groups at an interest location on the surface the structure with material parameters varying in a predefined range are then computed using the numerical model.This results in a set of dataset for training the ANN model.Once the ANN is trained,the material parameters can be identified simultaneously using the actual measured echo waveform as input to the ANN.Intensive tests have been conducted both numerically and experimentally to evaluate the effectiveness and accuracy of the currently proposed method.The results show that the maximum identification error of numerical example is less than 2%,and the maximum identification error of experimental test is less than 7%.Compared with currently prevailing methods and equipment,the proposefy the density and thickness,in addition to the elastic constants.Moreover,the reliability and accuracy of inverse prediction is significantly improved.Thus,it has broad applications and enables real-time field measurements,which has not been fulfilled by any other available methods or equipment.展开更多
According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheolog...According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheological behaviors were predicted.The model exhibited relatively serious prediction distortion in the low-temperature and high-strain rate parameter interval,and its accuracy was still unsatisfactory even after modification by a correction operator considering the coupling of temperature and strain rate.The microstructure characterization and statistical analysis showed that a large number of twinning occurred in the parameter intervals with prediction deviation.The occurrence of twinning complicated the local internal stress distribution by drastically changing the crystal orientation and led to significant fluctuations in the macroscopic strain-stress and hardening curves relative to the rheological processes dominated by the dislocation and softening mechanisms,making the logarithm of the strain rate and stress deviate from the linear relationship.This twinning phenomenon was greatly influenced by the temperature and strain rate.Herein,the influence mechanism on twinning behavior was analyzed from the perspective of the interaction of dislocation and twinning.展开更多
The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties o...The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.展开更多
Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model o...Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .展开更多
The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural net...The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound.展开更多
To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a deriv...To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.展开更多
Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization...Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization,which is the most widely used approach.Runoff modeling was studied in 38 catchments located in the Yellow–Huai–Hai River Basin(YHHRB).The values of the Nash–Sutcliffe efficiency coefficient(NSE),coefficient of determination(R2),and percent bias(PBIAS)indicated the acceptable performance of the soil and water assessment tool(SWAT)model in the YHHRB.Nine descriptors belonging to the categories of climate,soil,vegetation,and topography were used to express the catchment characteristics related to the hydrological processes.The quantitative relationships between the parameters of the SWAT model and the catchment descriptors were analyzed by six regression-based models,including linear regression(LR)equations,support vector regression(SVR),random forest(RF),k-nearest neighbor(kNN),decision tree(DT),and radial basis function(RBF).Each of the 38 catchments was assumed to be an ungauged catchment in turn.Then,the parameters in each target catchment were estimated by the constructed regression models based on the remaining 37 donor catchments.Furthermore,the similaritybased regionalization scheme was used for comparison with the regression-based approach.The results indicated that the runoff with the highest accuracy was modeled by the SVR-based scheme in ungauged catchments.Compared with the traditional LR-based approach,the accuracy of the runoff modeling in ungauged catchments was improved by the machine learning algorithms because of the outstanding capability to deal with nonlinear relationships.The performances of different approaches were similar in humid regions,while the advantages of the machine learning techniques were more evident in arid regions.When the study area contained nested catchments,the best result was calculated with the similarity-based parameter regionalization scheme because of the high catchment density and short spatial distance.The new findings could improve flood forecasting and water resources planning in regions that lack observed data.展开更多
The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and ra...The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reflectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m^-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations, the first derivative reflectance (D1), the second derivative reflectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and CLCD. The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemi...This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.展开更多
Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.T...Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.展开更多
The dynamic working process of 52SFZ-140-207B type of hydraulic bumper isanalyzed. The modeling method using architecture-based neural networks is introduced. Using thismodeling method, the dynamic model of the hydrau...The dynamic working process of 52SFZ-140-207B type of hydraulic bumper isanalyzed. The modeling method using architecture-based neural networks is introduced. Using thismodeling method, the dynamic model of the hydraulic bumper is established; Based on this model thestructural parameters of the hydraulic bumper are optimized with Genetic algorithm. The result showsthat the performance of the dynamic model is close to that of the hydraulic bumper, and the dynamicperformance of the hydraulic bumper is improved through parameter optimization.展开更多
Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation to...Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation tools.In this paper,we propose a new approach for predicting the bandwidth of metamaterial antenna using a novel ensemble model.The proposed ensemble model is composed of two levels of regression models.The first level consists of three strong models namely,random forest,support vector regression,and light gradient boosting machine.Whereas the second level is based on the ElasticNet regression model,which receives the prediction results from the models in the first level for refinement and producing the final optimal result.To achieve the best performance of these regression models,the advanced squirrel search optimization algorithm(ASSOA)is utilized to search for the optimal set of hyper-parameters of each model.Experimental results show that the proposed two-level ensemble model could achieve a robust prediction of the bandwidth of metamaterial antenna when compared with the recently published ensemble models based on the same publicly available benchmark dataset.The findings indicate that the proposed approach results in root mean square error(RMSE)of(0.013),mean absolute error(MAE)of(0.004),and mean bias error(MBE)of(0.0017).These results are superior to the other competing ensemble models and can predict the antenna bandwidth more accurately.展开更多
BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to pre...BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to predict the prognosis of hepatic steatosis patients.AIM To explore the risk factors associated with colorectal polyps in patients with NAFLD by analyzing liver-CAPs and establishing a diagnostic model.METHODS Patients who were diagnosed with colorectal polyps in the Department of Gastroenterology of our hospital between June 2021 and April 2022 composed the case group,and those with no important abnormalities composed the control group.The area under the receiver operating characteristic curve was used to predict the diagnostic efficiency.Differences were considered statistically significant when P<0.05.RESULTS The median triglyceride(TG)and liver-CAP in the case group were significantly greater than those in the control group(mmol/L,1.74 vs 1.05;dB/m,282 vs 254,P<0.05).TG and liver-CAP were found to be independent risk factors for colorectal polyps,with ORs of 2.338(95%CI:1.154–4.733)and 1.019(95%CI:1.006–1.033),respectively(P<0.05).And there was no difference in the diagnostic efficacy between liver-CAP and TG combined with liver-CAP(TG+CAP)(P>0.05).When the liver-CAP was greater than 291 dB/m,colorectal polyps were more likely to occur.CONCLUSION The levels of TG and liver-CAP in patients with colorectal polyps are significantly greater than those patients without polyps.Liver-CAP alone can be used to diagnose NAFLD with colorectal polyps.展开更多
A challenge for the development of Land Surface Models(LSMs) is improving transpiration of water exchange and photosynthesis of carbon exchange between terrestrial plants and the atmosphere, both of which are governed...A challenge for the development of Land Surface Models(LSMs) is improving transpiration of water exchange and photosynthesis of carbon exchange between terrestrial plants and the atmosphere, both of which are governed by stoma in leaves. In the photosynthesis module of these LSMs, variations of parameters arising from diversity in plant functional types(PFTs) and climate remain unclear. Identifying sensitive parameters among all photosynthetic parameters before parameter estimation can not only reduce operation cost, but also improve the usability of photosynthesis models worldwide. Here, we analyzed 13 parameters of a biochemically-based photosynthesis model(FvCB), implemented in many LSMs, using two sensitivity analysis(SA) methods(i.e., the Sobol’ method and the Morris method) for setting up the parameter ensemble. Three different model performance metrics, i.e.,Root Mean Squared Error(RMSE), Nash Sutcliffe efficiency(NSE), and Standard Deviation(STDEV) were introduced for model assessment and sensitive parameters identification. The results showed that among all photosynthetic parameters only a small portion of parameters were sensitive, and the sensitive parameters were different across plant functional types: maximum rate of Rubisco activity(Vcmax25), maximum electron transport rate(Jmax25), triose phosphate use rate(TPU) and dark respiration in light(Rd) were sensitive in broad leafevergreen trees(BET), broad leaf-deciduous trees(BDT) and needle leaf-evergreen trees(NET), while only Vcmax25and TPU are sensitive in short vegetation(SV), dwarf trees and shrubs(DTS), and agriculture and grassland(AG). The two sensitivity analysis methods suggested a strong SA coherence;in contrast, different model performance metrics led to different SA results. This misfit suggests that more accurate values of sensitive parameters, specifically, species specific and seasonal variable parameters, are required to improve the performance of the FvCB model.展开更多
We discuss formulas and techniques for finding maximum-likelihood estimators of parameters of autoregressive (with particular emphasis on Markov and Yule) models, computing their asymptotic variance-covariance matrix ...We discuss formulas and techniques for finding maximum-likelihood estimators of parameters of autoregressive (with particular emphasis on Markov and Yule) models, computing their asymptotic variance-covariance matrix and displaying the resulting confidence regions;Monte Carlo simulation is then used to establish the accuracy of the corresponding level of confidence. The results indicate that a direct application of the Central Limit Theorem yields errors too large to be acceptable;instead, we recommend using a technique based directly on the natural logarithm of the likelihood function, verifying its substantially higher accuracy. Our study is then extended to the case of estimating only a subset of a model’s parameters, when the remaining ones (called nuisance) are of no interest to us.展开更多
This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been pu...This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been published,but very few on those generated from a mesh using triangular elements.The use of triangular elements is aimed at extending the application of the approach to any shape of modeled devices.Basic concepts of the approach are presented in the case of electromagnetic devices.The procedure for coding the approach in the case of a flat linear permanent magnet machine is presented.Codes developed under MATLAB environment are also included.展开更多
Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation sel...Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.展开更多
基金Supported by Shanghai Municipal Science and Technology Program (Grant No.21511101701)National Key Research and Development Program of China (Grant No.2021YFC0122704)。
文摘A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.
基金funded by the National Natural Science Foundation of China(Grant No.12272247)National Key Project(Grant No.GJXM92579)Major Research and Development Project of Metallurgical Corporation of China Ltd.in the Non-Steel Field(Grant No.2021-5).
文摘The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.
基金Supported by National Natural Science Foundation of China(Grant No.51805141)Funds for Creative Research Groups of Hebei Province of China(Grant No.E2020202142)+2 种基金Tianjin Municipal Science and Technology Plan Project of China(Grant No.19ZXZNGX00100)Key R&D Program of Hebei Province of China(Grant No.19227208D)National Key Research and development Program of China(Grant No.2020YFB2009400).
文摘On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness,nonuniform material properties.This work develops for the first time a method that uses ultrasound echo groups and artificial neural network(ANN)for reliable on-site real-time identification of material parameters.The use of echo groups allows the use of lower frequencies,and hence more accommodative to structural complexity.To train the ANNs,a numerical model is established that is capable of computing the waveform of ultrasonic echo groups for any given set of material properties of a given structure.The waveform of an ultrasonic echo groups at an interest location on the surface the structure with material parameters varying in a predefined range are then computed using the numerical model.This results in a set of dataset for training the ANN model.Once the ANN is trained,the material parameters can be identified simultaneously using the actual measured echo waveform as input to the ANN.Intensive tests have been conducted both numerically and experimentally to evaluate the effectiveness and accuracy of the currently proposed method.The results show that the maximum identification error of numerical example is less than 2%,and the maximum identification error of experimental test is less than 7%.Compared with currently prevailing methods and equipment,the proposefy the density and thickness,in addition to the elastic constants.Moreover,the reliability and accuracy of inverse prediction is significantly improved.Thus,it has broad applications and enables real-time field measurements,which has not been fulfilled by any other available methods or equipment.
基金support of the Key Research and Development Program of Shandong Province of China(grant no.2021ZLGX01)Shandong Provincial Key Research and Development Program(Major Scientific and Technological Innovation Project),China(grant no.2021CXGC010206).
文摘According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheological behaviors were predicted.The model exhibited relatively serious prediction distortion in the low-temperature and high-strain rate parameter interval,and its accuracy was still unsatisfactory even after modification by a correction operator considering the coupling of temperature and strain rate.The microstructure characterization and statistical analysis showed that a large number of twinning occurred in the parameter intervals with prediction deviation.The occurrence of twinning complicated the local internal stress distribution by drastically changing the crystal orientation and led to significant fluctuations in the macroscopic strain-stress and hardening curves relative to the rheological processes dominated by the dislocation and softening mechanisms,making the logarithm of the strain rate and stress deviate from the linear relationship.This twinning phenomenon was greatly influenced by the temperature and strain rate.Herein,the influence mechanism on twinning behavior was analyzed from the perspective of the interaction of dislocation and twinning.
文摘The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.
文摘Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .
文摘The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound.
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.
基金funded by the National Key Research and Development Program of China(2017YFA0605002,2017YFA0605004,and 2016YFA0601501)the National Natural Science Foundation of China(41961124007,51779145,and 41830863)“Six top talents”in Jiangsu Province(RJFW-031)。
文摘Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization,which is the most widely used approach.Runoff modeling was studied in 38 catchments located in the Yellow–Huai–Hai River Basin(YHHRB).The values of the Nash–Sutcliffe efficiency coefficient(NSE),coefficient of determination(R2),and percent bias(PBIAS)indicated the acceptable performance of the soil and water assessment tool(SWAT)model in the YHHRB.Nine descriptors belonging to the categories of climate,soil,vegetation,and topography were used to express the catchment characteristics related to the hydrological processes.The quantitative relationships between the parameters of the SWAT model and the catchment descriptors were analyzed by six regression-based models,including linear regression(LR)equations,support vector regression(SVR),random forest(RF),k-nearest neighbor(kNN),decision tree(DT),and radial basis function(RBF).Each of the 38 catchments was assumed to be an ungauged catchment in turn.Then,the parameters in each target catchment were estimated by the constructed regression models based on the remaining 37 donor catchments.Furthermore,the similaritybased regionalization scheme was used for comparison with the regression-based approach.The results indicated that the runoff with the highest accuracy was modeled by the SVR-based scheme in ungauged catchments.Compared with the traditional LR-based approach,the accuracy of the runoff modeling in ungauged catchments was improved by the machine learning algorithms because of the outstanding capability to deal with nonlinear relationships.The performances of different approaches were similar in humid regions,while the advantages of the machine learning techniques were more evident in arid regions.When the study area contained nested catchments,the best result was calculated with the similarity-based parameter regionalization scheme because of the high catchment density and short spatial distance.The new findings could improve flood forecasting and water resources planning in regions that lack observed data.
基金Project supported by the National Natural Science Foundation of China (No.40571115)the National High Tech-nology Research and Development Program (863 Program) of China (Nos.2006AA120101 and 2007AA10Z205)
文摘The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reflectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m^-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations, the first derivative reflectance (D1), the second derivative reflectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and CLCD. The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金the support of Prince Sultan University for paying the article processing charges(APC)of this publication.
文摘This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.
文摘Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.
文摘The dynamic working process of 52SFZ-140-207B type of hydraulic bumper isanalyzed. The modeling method using architecture-based neural networks is introduced. Using thismodeling method, the dynamic model of the hydraulic bumper is established; Based on this model thestructural parameters of the hydraulic bumper are optimized with Genetic algorithm. The result showsthat the performance of the dynamic model is close to that of the hydraulic bumper, and the dynamicperformance of the hydraulic bumper is improved through parameter optimization.
基金The authors received funding for this study from the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFP2021-033).
文摘Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation tools.In this paper,we propose a new approach for predicting the bandwidth of metamaterial antenna using a novel ensemble model.The proposed ensemble model is composed of two levels of regression models.The first level consists of three strong models namely,random forest,support vector regression,and light gradient boosting machine.Whereas the second level is based on the ElasticNet regression model,which receives the prediction results from the models in the first level for refinement and producing the final optimal result.To achieve the best performance of these regression models,the advanced squirrel search optimization algorithm(ASSOA)is utilized to search for the optimal set of hyper-parameters of each model.Experimental results show that the proposed two-level ensemble model could achieve a robust prediction of the bandwidth of metamaterial antenna when compared with the recently published ensemble models based on the same publicly available benchmark dataset.The findings indicate that the proposed approach results in root mean square error(RMSE)of(0.013),mean absolute error(MAE)of(0.004),and mean bias error(MBE)of(0.0017).These results are superior to the other competing ensemble models and can predict the antenna bandwidth more accurately.
基金Supported by the Special Research Project of the Capital’s Health Development,No.2024-3-7037and the Beijing Clinical Key Specialty Project.
文摘BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to predict the prognosis of hepatic steatosis patients.AIM To explore the risk factors associated with colorectal polyps in patients with NAFLD by analyzing liver-CAPs and establishing a diagnostic model.METHODS Patients who were diagnosed with colorectal polyps in the Department of Gastroenterology of our hospital between June 2021 and April 2022 composed the case group,and those with no important abnormalities composed the control group.The area under the receiver operating characteristic curve was used to predict the diagnostic efficiency.Differences were considered statistically significant when P<0.05.RESULTS The median triglyceride(TG)and liver-CAP in the case group were significantly greater than those in the control group(mmol/L,1.74 vs 1.05;dB/m,282 vs 254,P<0.05).TG and liver-CAP were found to be independent risk factors for colorectal polyps,with ORs of 2.338(95%CI:1.154–4.733)and 1.019(95%CI:1.006–1.033),respectively(P<0.05).And there was no difference in the diagnostic efficacy between liver-CAP and TG combined with liver-CAP(TG+CAP)(P>0.05).When the liver-CAP was greater than 291 dB/m,colorectal polyps were more likely to occur.CONCLUSION The levels of TG and liver-CAP in patients with colorectal polyps are significantly greater than those patients without polyps.Liver-CAP alone can be used to diagnose NAFLD with colorectal polyps.
基金supported by the CAS"Light of West China"Program (No.[2020]82)Key technology projects of Inner Mongolia Autonomous Region (Grant No.2020GG0306)+1 种基金Science and Technology Plan Projects of Alxa League (Grant No.AMY2020-18)Natural Science Foundation of Gansu Province (No.21JR7RA038).
文摘A challenge for the development of Land Surface Models(LSMs) is improving transpiration of water exchange and photosynthesis of carbon exchange between terrestrial plants and the atmosphere, both of which are governed by stoma in leaves. In the photosynthesis module of these LSMs, variations of parameters arising from diversity in plant functional types(PFTs) and climate remain unclear. Identifying sensitive parameters among all photosynthetic parameters before parameter estimation can not only reduce operation cost, but also improve the usability of photosynthesis models worldwide. Here, we analyzed 13 parameters of a biochemically-based photosynthesis model(FvCB), implemented in many LSMs, using two sensitivity analysis(SA) methods(i.e., the Sobol’ method and the Morris method) for setting up the parameter ensemble. Three different model performance metrics, i.e.,Root Mean Squared Error(RMSE), Nash Sutcliffe efficiency(NSE), and Standard Deviation(STDEV) were introduced for model assessment and sensitive parameters identification. The results showed that among all photosynthetic parameters only a small portion of parameters were sensitive, and the sensitive parameters were different across plant functional types: maximum rate of Rubisco activity(Vcmax25), maximum electron transport rate(Jmax25), triose phosphate use rate(TPU) and dark respiration in light(Rd) were sensitive in broad leafevergreen trees(BET), broad leaf-deciduous trees(BDT) and needle leaf-evergreen trees(NET), while only Vcmax25and TPU are sensitive in short vegetation(SV), dwarf trees and shrubs(DTS), and agriculture and grassland(AG). The two sensitivity analysis methods suggested a strong SA coherence;in contrast, different model performance metrics led to different SA results. This misfit suggests that more accurate values of sensitive parameters, specifically, species specific and seasonal variable parameters, are required to improve the performance of the FvCB model.
文摘We discuss formulas and techniques for finding maximum-likelihood estimators of parameters of autoregressive (with particular emphasis on Markov and Yule) models, computing their asymptotic variance-covariance matrix and displaying the resulting confidence regions;Monte Carlo simulation is then used to establish the accuracy of the corresponding level of confidence. The results indicate that a direct application of the Central Limit Theorem yields errors too large to be acceptable;instead, we recommend using a technique based directly on the natural logarithm of the likelihood function, verifying its substantially higher accuracy. Our study is then extended to the case of estimating only a subset of a model’s parameters, when the remaining ones (called nuisance) are of no interest to us.
文摘This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been published,but very few on those generated from a mesh using triangular elements.The use of triangular elements is aimed at extending the application of the approach to any shape of modeled devices.Basic concepts of the approach are presented in the case of electromagnetic devices.The procedure for coding the approach in the case of a flat linear permanent magnet machine is presented.Codes developed under MATLAB environment are also included.
基金supported by the National Natural Science Foundation of China(72071111,71801127,71671091)the NSFC and the UK Royal Society joint project(71811530338)+2 种基金the Special Postdoctoral Fund of China(2019TQ0150)the Fundamental Research Funds for the Central Universities of China(NC2019003)the Intelligence Introduction Base of the Ministry of Science and Technology(G20190010178)。
文摘Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.