期刊文献+
共找到324,681篇文章
< 1 2 250 >
每页显示 20 50 100
Stable immobilization of lithium polysulfides using three-dimensional ordered mesoporous Mn_(2)O_(3) as the host material in lithium-sulfur batteries 被引量:1
1
作者 Sung Joon Park Yun Jeong Choi +6 位作者 Hyun-seung Kim Min Joo Hong Hongjun Chang Janghyuk Moon Young-Jun Kim Junyoung Mun Ki Jae Kim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期99-112,共14页
Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the c... Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs. 展开更多
关键词 host material lithium-sulfur battery ordered mesoporous structure shuttle effect transition-metal oxides
下载PDF
Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution 被引量:1
2
作者 Xuan Wang Akang Chen +3 位作者 XinLei Wu Jiatao Zhang Jichen Dong Leining Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期49-94,共46页
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart... In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized. 展开更多
关键词 Transition metal chalcogenides Atomic substitution Ion exchange Low-dimensional materials Controllable synthesis
下载PDF
Emerging two-dimensional Mo-based materials for rechargeable metal-ion batteries:Advances and perspectives
3
作者 Qingqing Ruan Yuehua Qian +2 位作者 Mengda Xue Lingyun Chen Qichun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期487-518,I0012,共33页
With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years... With the rapid development of rechargeable metal-ion batteries(MIBs)with safety,stability and high energy density,significant efforts have been devoted to exploring high-performance electrode materials.In recent years,two-dimensional(2D)molybdenum-based(Mo-based)materials have drawn considerable attention due to their exceptional characteristics,including low cost,unique crystal structure,high theoretical capacity and controllable chemical compositions.However,like other transition metal compounds,Mo-based materials are facing thorny challenges to overcome,such as slow electron/ion transfer kinetics and substantial volume changes during the charge and discharge processes.In this review,we summarize the recent progress in developing emerging 2D Mo-based electrode materials for MIBs,encompassing oxides,sulfides,selenides,carbides.After introducing the crystal structure and common synthesis methods,this review sheds light on the charge storage mechanism of several 2D Mo-based materials by various advanced characterization techniques.The latest achievements in utilizing 2D Mo-based materials as electrode materials for various MIBs(including lithium-ion batteries(LIBs),sodium-ion batteries(SIBs)and zinc-ion batteries(ZIBs))are discussed in detail.Afterwards,the modulation strategies for enhancing the electrochemical performance of 2D Mo-based materials are highlighted,focusing on heteroatom doping,vacancies creation,composite coupling engineering and nanostructure design.Finally,we present the existing challenges and future research directions for 2D Mo-based materials to realize high-performance energy storage systems. 展开更多
关键词 Molybdenum-based materials Two-dimensional materials Lithium-ion batteries Sodium-ion batteries Zinc-ion batteries
下载PDF
Electrocatalytic stability of two-dimensional materials
4
作者 Huijie Zhu Youchao Liu +3 位作者 Yongsen Wu Yushan He Yang Cao Sheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期302-320,I0006,共20页
In electrocatalysis,two-dimensional(2D)materials have attracted extensive interests due to their unique electronic structure and physical properties.In recent years,many efforts have been devoted to improving the cata... In electrocatalysis,two-dimensional(2D)materials have attracted extensive interests due to their unique electronic structure and physical properties.In recent years,many efforts have been devoted to improving the catalytic activity of 2D materials.However,the stability of 2D materials under catalytic conditions,as a critical issue,requires better understanding for any practical applications.This review summarizes recent progress in electrocatalytic stability of 2D materials,including four intrinsic factors that affect the stability of 2D materials:1.Weak interactions between 2D catalyst and substrate;2,delamination of 2D catalyst layers;3.metastable phase of 2D materials;4.chemistry and environmental instability of 2D materials.Meanwhile,some corresponding solutions are summarized for each factor.In addition,this review proposes potential routes for developing 2D catalytic materials with both high activity and stability. 展开更多
关键词 2D materials ELECTROCATALYST STABILITY
下载PDF
Progress on two-dimensional ferrovalley materials
5
作者 李平 刘邦 +2 位作者 陈帅 张蔚曦 郭志新 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期32-43,共12页
The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted t... The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted tremendous research interest. The intrinsic spontaneous valley polarization in two-dimensional magnetic systems, ferrovalley material, provides convenience for detecting and modulating the valley. In this review, we first introduce the development of valleytronics.Then, the valley polarization forms by the p-, d-, and f-orbit that are discussed. Following, we discuss the investigation progress of modulating the valley polarization of two-dimensional ferrovalley materials by multiple physical fields, such as electric, stacking mode, strain, and interface. Finally, we look forward to the future developments of valleytronics. 展开更多
关键词 ferrovalley valley polarization two-dimensional materials multi-field tunable
下载PDF
Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
6
作者 Qian Wang Da-Wei Wu +2 位作者 Guang-Hua Guo Meng-Qiu Long Yun-Peng Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期194-198,共5页
Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomen... Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomenon has been discovered in more altermagnetic materials.In this work,we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets,including MF4 with M covering all 3d and 4d transition metal elements,as well as TS2 with T=V,Cr,Mn,Fe.Through the magnetic symmetry operation of RuF4 and MnS2,it is verified that breaking the time inversion is a necessary condition for spin splitting.Based on symmetry analysis and first-principles calculations,we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path.This work paves the way for exploring altermagnetism in two-dimensional materials. 展开更多
关键词 two-dimensional altermagnetic materials altermagnetism spin splitting first-principles calculations
下载PDF
Unlocking the potential of ultra-thin two-dimensional antimony materials:Selective growth and carbon coating for efficient potassium-ion storage
7
作者 Dongyu Zhang Zhaomin Wang +4 位作者 Yabin Shen Yeguo Zou Chunli Wang Limin Wang Yong Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期440-449,共10页
Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused b... Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries. 展开更多
关键词 ANTIMONY Two-dimensional materials Selective growth Nitrogen-doped carbon Potassium-ion batteries
下载PDF
Recent progress on valley polarization and valley-polarized topological states in two-dimensional materials
8
作者 王斐 张亚玲 +2 位作者 杨文佳 张会生 许小红 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期16-31,共16页
Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated ... Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field. 展开更多
关键词 valley polarization valley-polarized topological states two-dimensional material
下载PDF
Anomalous valley Hall effect in two-dimensional valleytronic materials
9
作者 陈洪欣 原晓波 任俊峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期2-14,共13页
The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectron... The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectronics.AVHE exists in two-dimensional(2D)materials possessing valley polarization(VP),and such 2D materials usually belong to the hexagonal honeycomb lattice.Therefore,it is necessary to achieve valleytronic materials with VP that are more readily to be synthesized and applicated experimentally.In this topical review,we introduce recent developments on realizing VP as well as AVHE through different methods,i.e.,doping transition metal atoms,building ferrovalley heterostructures and searching for ferrovalley materials.Moreover,2D ferrovalley systems under external modulation are also discussed.2D valleytronic materials with AVHE demonstrate excellent performance and potential applications,which offer the possibility of realizing novel low-energy-consuming devices,facilitating further development of device technology,realizing miniaturization and enhancing functionality of them. 展开更多
关键词 anomalous valley Hall effect valley polarization valleytronics two-dimensional materials
下载PDF
Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
10
作者 程晓昱 解晨雪 +6 位作者 刘宇伦 白瑞雪 肖南海 任琰博 张喜林 马惠 蒋崇云 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期112-117,共6页
Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have b... Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices. 展开更多
关键词 two-dimensional materials deep learning data augmentation generating adversarial networks
下载PDF
Two-dimensional MOF-based materials:Preparations and applications as electrodes in Li-ion batteries
11
作者 Narges Nobakht Seyyed Ahmad Etghani +1 位作者 Mohammad Hosseini Seyed Hamed Aboutalebi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期388-418,I0008,共32页
Two-dimensional(2D)metal-organic frameworks(MOFs)are rapidly emerging as a unique class of mushrooming family of 2D materials offering distinctive features,such as hierarchical porosity,extensive surface area,easily a... Two-dimensional(2D)metal-organic frameworks(MOFs)are rapidly emerging as a unique class of mushrooming family of 2D materials offering distinctive features,such as hierarchical porosity,extensive surface area,easily available active sites,and versatile,adaptable structures.These promising characteristics have positioned them as highly appealing alternatives for a wide range of applications in energy storage technologies,including lithium batteries.Nevertheless,the poor conductivity and limited stability of 2D MOFs have limited their real applications in electrochemical energy storage.These limitations have therefore warranted ongoing research to enhance the performance of 2D MOFs.Given the significance of 2D MOF-based materials as an emerging class of advanced materials,a multitude of strategy has been devised to address these challenges such as synthesizing 2D conductive MOFs and derivatives along with 2D MOF hybridization.One promising approach involves the use of 2D MOF derivatives,including transition metal oxides,which due to their abundant unsatu rated active metal sites and shorter diffusion paths,offer superior electrochemical performance.Additionally,by combining pristine 2D MOFs with other materials,hybrid 2D MOF materials can be created.These hybrids,with their enhanced stability and conductivity,can be directly utilized as active materials in lithium batteries.In the present review,we categorize 2D MOF-based materials into three distinct groups:pristine 2D MOFs,2D MOFderived materials,and 2D MOF hybrid materials.The synthesis methods for each group,along with their specific applications as electrode materials in lithium-ion batteries,are discussed in detail.This comprehensive review provides insights into the potential of 2D MOFs while highlighting the opportunities and challenges that are present in this evolving field. 展开更多
关键词 Li-ion batteries 2D materials 2D metal-organic frameworks Energy storage Synthesis
下载PDF
Two-Dimensional Materials for Highly Efficient and Stable Perovskite Solar Cells
12
作者 Xiangqian Shen Xuesong Lin +5 位作者 Yong Peng Yiqiang Zhang Fei Long Qifeng Han Yanbo Wang Liyuan Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期176-212,共37页
Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders th... Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders their practical application.In the past few years,two-dimensional(2D)materials(e.g.,graphene and its derivatives,transitional metal dichalcogenides,MXenes,and black phosphorus)have been identified as a promising solution to solving these problems because of their dangling bond-free surfaces,layer-dependent electronic band structures,tunable functional groups,and inherent compactness.Here,recent progress of 2D material toward efficient and stable PSCs is summarized,including its role as both interface materials and electrodes.We discuss their beneficial effects on perovskite growth,energy level alignment,defect passivation,as well as blocking external stimulus.In particular,the unique properties of 2D materials to form van der Waals heterojunction at the bottom interface are emphasized.Finally,perspectives on the further development of PSCs using 2D materials are provided,such as designing high-quality van der Waals heterojunction,enhancing the uniformity and coverage of 2D nanosheets,and developing new 2D materials-based electrodes. 展开更多
关键词 Perovskite solar cells Two-dimensional materials Interface engineering Van der Waals heterojunction Electrodes
下载PDF
Control of light-matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
13
作者 Shasha Li Yini Fang Jianfang Wang 《Opto-Electronic Science》 2024年第7期1-19,共19页
Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk... Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk materials owing to the atomic nature of 2D materials.Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions,offering great opportunities for both fundamental research and technological applications.Nanoparticle-on-mirror(NPo M)structures with extremely confined optical fields are highly desired in this aspect.In addition,2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom.A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction.In this review,we will first introduce the basic concepts of plasmonic modes in NPo M structures.Interactions between plasmons and quasi-particles in 2D materials,e.g.,excitons and phonons,from weak to strong coupling and potential applications will then be described in detail.Related phenomena in subnanometer metallic gaps separated by 2D materials,such as quantum tunneling,will also be touched.We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research.We believe that the hybrid systems of2D materials and NPo M structures will be a promising research field in the future. 展开更多
关键词 light-matter interactions nanoparticle-on-mirror structures plasmonic enhancement two-dimensional materials
下载PDF
Two-dimensional layered In_(2)P_(3)S_(9): A novel superior anode material for sodium-ion batteries
14
作者 Longsheng Zhong Hongneng Chen +4 位作者 Yanzhe Sheng Yiting Sun Yanhe Xiao Baochang Cheng Shuijin Lei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期294-304,I0008,共12页
Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-di... Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries. 展开更多
关键词 Metal thiophosphate In_(2)P_(3)S_(9) Anode material Sodium-ion battery Full cell
下载PDF
Solid-state mechanochemistry advancing two dimensional materials for lithium-ion storage applications:A mini review 被引量:2
15
作者 Xingang Liu Wenbin Kang +4 位作者 Xi Li Li Zeng Yijun Li Qi Wang Chuhong Zhang 《Nano Materials Science》 EI CAS CSCD 2023年第2期210-227,共18页
The vigorous development of two-dimensional(2D)materials brings about numerous opportunities for lithiumion batteries(LIBs)due to their unique 2D layered structure,large specific surface area,outstanding mechanical an... The vigorous development of two-dimensional(2D)materials brings about numerous opportunities for lithiumion batteries(LIBs)due to their unique 2D layered structure,large specific surface area,outstanding mechanical and flexibility properties,etc.Modern technologies for production of 2D materials include but are not limited to mechanochemical(solid-state/liquid-phase)exfoliation,the solvothermal method and chemical vapor deposition.In this review,strategies leading to the production of 2D materials via solid-state mechanochemistry featuring traditional high energy ball-milling and Sichuan University patented pan-milling are highlighted.The mechanism involving exfoliation,edge selective carbon radical generation of the 2D materials is delineated and this is followed by detailed discussion on representative mechanochemical techniques for tailored and improved lithium-ion storage performance.In the light of the advantages of the solid-state mechanochemical method,there is great promise for the commercialization of 2D materials for the next-generation high performance LIBs. 展开更多
关键词 Two-dimensional materials Solid-state mechanochemistry Ball-milling PAN-MILLING Lithium-ion batteries
下载PDF
Radiofrequency sensing systems based on emerging two-dimensional materials and devices 被引量:1
16
作者 Honglei Xue Wanshuo Gao +3 位作者 Jianwei Gao Grégory F Schneider Chen Wang Wangyang Fu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期319-340,共22页
As one of the most promising platforms for wireless communication,radiofrequency(RF)electronics have been widely advocated for the development of sensing systems.In particular,monolayer and few-layer two-dimensional(2... As one of the most promising platforms for wireless communication,radiofrequency(RF)electronics have been widely advocated for the development of sensing systems.In particular,monolayer and few-layer two-dimensional(2D)materials exhibiting extraordinary electrical properties not only can be integrated to improve the performance of RF circuits,but also to display exceptional sensing capabilities.This review provides an in-depth perspective of current trends and challenges in the application of 2D materials for RF biochemical sensing,including:(i)theoretical bases to achieve different sensing schemes;(ii)unique properties of 2D materials for reasoning their applications in RF sensing;(iii)developments in 2D RF sensors to facilitate the practice of biochemical sensors with ever-demanding sensitivities,as well as their potential uses in meeting the requirements and challenges of biochemical sensors in the Internet-of-Things era. 展开更多
关键词 radiofrequency sensing two-dimensional materials wireless communication
下载PDF
Dynamic behavior of tunneling triboelectric charges in two-dimensional materials 被引量:1
17
作者 Xuan Zhao Liangxu Xu +3 位作者 Xiaochen Xun Fangfang Gao Qingliang Liao Yue Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1801-1808,共8页
Although the research history of triboelectrification has been more than 2000 years, there are still many problems to be solved so far.The use of scanning probe microscopy provides an important way to quantitatively s... Although the research history of triboelectrification has been more than 2000 years, there are still many problems to be solved so far.The use of scanning probe microscopy provides an important way to quantitatively study the transfer, accumulation, and dissipation of triboelectric charges in the process of triboelectrification. Two-dimensional materials are considered to be key materials for new electronic devices in the post-Moore era due to their atomic-scale size advantages. If the electrostatic field generated by triboelectrification can be used to replace the traditional gate electrostatic field, it is expected to simplify the structure of two-dimensional electronic devices and reconfigure them at any time according to actual needs. Here, we investigate the triboelectrification process of various two-dimensional materials such as MoS_(2), WSe_(2),and ZnO. Different from traditional bulk materials, after two-dimensional materials are rubbed, the triboelectric charges generated may tunnel through the two-dimensional materials to the underlying substrate surface. Because the tunneling triboelectric charge is protected by the twodimensional material, its stable residence time on the substrate surface can reach more than 7 days, which is more than tens of minutes for the traditional triboelectric charge. In addition, the electrostatic field generated by the tunneling triboelectric charge can effectively regulate the carrier transport performance of two-dimensional materials, and the source–drain current of the field effect device regulated by the triboelectric floating gate is increased by nearly 60 times. The triboelectric charge tunneling phenomenon in two-dimensional materials is expected to be applied in the fields of new two-dimensional electronic devices and reconfigurable functional circuits. 展开更多
关键词 two-dimensional materials triboelectric charge dynamic behavior reconfigurable electronics
下载PDF
Two-dimensional nanomaterials confined single atoms: New opportunities for environmental remediation 被引量:1
18
作者 Yu Yin Lei Shi +4 位作者 Shu Zhang Xiaoguang Duan Jinqiang Zhang Hongqi Sun Shaobin Wang 《Nano Materials Science》 EI CAS CSCD 2023年第1期15-38,共24页
Two-dimensional(2D)supports confined single-atom catalysts(2D SACs)with unique geometric and electronic structures have been attractive candidates in different catalytic applications,such as energy conversion and stor... Two-dimensional(2D)supports confined single-atom catalysts(2D SACs)with unique geometric and electronic structures have been attractive candidates in different catalytic applications,such as energy conversion and storage,value-added chemical synthesis and environmental remediation.However,their environmental appli-cations lack of a comprehensive summary and in-depth discussion.In this review,recent progresses in synthesis routes and advanced characterization techniques for 2D SACs are introduced,and a comprehensive discussion on their applications in environmental remediation is presented.Generally,2D SACs can be effective in catalytic elimination of aqueous and gaseous pollutants via radical or non-radical routes and transformation of toxic pollutants into less poisonous species or highly value-added products,opening a new horizon for the contami-nant treatment.In addition,in-depth reaction mechanisms and potential pathways are systematically discussed,and the relationship between the structure-performance is highlighted.Finally,several critical challenges within this field are presented,and possible directions for further explorations of 2D SACs in environmental remediation are suggested.Although the research of 2D SACs in the environmental application is still in its infancy,this review will provide a timely summary on the emerging field,and would stimulate tremendous interest for designing more attractive 2D SACs and promoting their wide applications. 展开更多
关键词 Single-atom catalysis Two-dimensional material Advanced oxidation process Degradation Transformation Industrial wastewater
下载PDF
Toward high-efficiency perovskite solar cells with one-dimensional oriented nanostructured electron transport materials 被引量:1
19
作者 Yinhua Lv Bing Cai +3 位作者 Ruihan Yuan Yihui Wu Quinn Qiao Wen-Hua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期66-87,I0003,共23页
The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs)... The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs),1D nanostructured electron transport materials(ETMs)have drawn tremendous interest.However,the power conversion efficiencies(PCEs)of these devices have always significantly lagged behind their mesoscopic and planar counterparts.High-efficiency PSCs with 1D ETMs showing efficiency over 22%were just realized in the most recent studies.It yet lacks a comprehensive review covering the development of 1D ETMs and their application in PSCs.We hence timely summarize the advances in 1D ETMs-based solar cells,emphasizing on the fundamental and optimization issues of charge separation and collection ability,and their influence on PV performance.After sketching the classification and requirements for high-efficiency 1D nanostructured solar cells,we highlight the applicability of 1D TiO_(2)nanostructures in PSCs,including nanotubes,nanorods,nanocones,and nanopyramids,and carefully analyze how the electrostatic field affects cell performance.Other kinds of oriented nanostructures,e.g.,ZnO and SnO_(2)ETMs,are also described.Finally,we discuss the challenges and propose some potential strategies to further boost device performance.This review provides a broad range of valuable work in this fast-developing field,which we hope will stimulate research enthusiasm to push PSCs to an unprecedented level. 展开更多
关键词 1D nanostructures Perovskite solar cells Electron transport materials Electrostatic field High-efficiency
下载PDF
Unfolding the structure-property relationships of Li_(2)S anchoring on two-dimensional materials with high-throughput calculations and machine learning
20
作者 Lujie Jin Hongshuai Wang +2 位作者 Hao Zhao Yujin Ji Youyong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期31-39,I0002,共10页
Lithium-sulfur(Li-S)batteries are notable for their high theoretical energy density,but the‘shuttle effect’and the limited conversion kinetics of Li-S species can downgrade their actual performance.An essential stra... Lithium-sulfur(Li-S)batteries are notable for their high theoretical energy density,but the‘shuttle effect’and the limited conversion kinetics of Li-S species can downgrade their actual performance.An essential strategy is to design anchoring materials(AMs)to appropriately adsorb Li-S species.Herein,we propose a new three-procedure protocol,named InfoAd(Informative Adsorption)to evaluate the anchoring of Li_(2)S on two-dimensional(2D)materials and disclose the underlying importance of material features by combining high-throughput calculation workflow and machine learning(ML).In this paradigm,we calculate the anchoring of Li_(2)S on 12552D A_(x)B_(y)(B in the VIA/VIIA group)materials and pick out 44(un)reported nontoxic 2D binary A_(x)B_(y)AMs,in which the importance of the geometric features on the anchoring effect is revealed by ML for the first time.We develop a new Infograph model for crystals to accurately predict whether a material has a moderate binding with Li_(2)S and extend it to all 2D materials.Our InfoAd protocol elucidates the underlying structure-property relationship of Li_(2)S adsorption on 2D materials and provides a general research framework of adsorption-related materials for catalysis and energy/substance storage. 展开更多
关键词 Adsorption Anchoring material Li-S battery Extreme gradient boosting Graph neural network material geometry Semi-supervised learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部