A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength c...A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength calibration for the VUV spectroscopy is achieved utilizing a zinc lamp.The grating angle and charge-coupled device(CCD)position are carefully calibrated for different wavelength positions.The wavelength calibration of the VUV spectroscopy is crucial for improving the accuracy of impurity spectral data,and is required to identify more impurity spectral lines for impurity transport research.Impurity spectra of EAST plasmas have also been obtained in the wavelength range of 50–300 nm with relatively high spectral resolution.It is found that the impurity emissions in the edge region are still dominated by low-Z impurities,such as carbon,oxygen,and nitrogen,albeit with the application of fulltungsten divertors on the EAST tokamak.展开更多
Wavelength selective switch(WSS)is the crucial component in the reconfigurable optical add/drop multiplexer(ROADM),which plays a pivotal role in the next-generation all-optical networks.We present a compact architectu...Wavelength selective switch(WSS)is the crucial component in the reconfigurable optical add/drop multiplexer(ROADM),which plays a pivotal role in the next-generation all-optical networks.We present a compact architecture of twin 1×40 liquid crystal on silicon(LCoS)-based WSS,which can be regarded as a 4f system in the wavelength direction and a 2f system in the switching direction.It is designed with theoretical analysis and simulation investigation.Polarization multiplexing is employed for two sources of twin WSS by polarization con-version before the common optical path.The WSS system attains a coupling efficacy exceeding 96%for 90%of the ports through simulation optimization.The 3 dB bandwidth can be achieved by more than 44 GHz at a 50 GHz grid for all 120 channels at all deflection ports.This work establishes a solid foundation for developing high-performance WSS with larger port counts.展开更多
The wavelength routing technology applied to computer interconnection networks is introduced in this paper.By analyzing the relation between wavelength and network routing,we describe a concept of wavelength used as n...The wavelength routing technology applied to computer interconnection networks is introduced in this paper.By analyzing the relation between wavelength and network routing,we describe a concept of wavelength used as network IP address,and propose a wavelength routing topology to extend the scale of a network and realize the scalability of the network.Moreover,a twin wavelength ring network that is being developed in our laboratory to implement and test the function of wavelength routing is presented,and the main units of the twin wavelength ring network are presented also.According to the testing results based on a single wavelength ring network,it proves that the optical interconnection technology is a perfect technology to provide enough communication bandwidth for computer network.展开更多
High performance liquid chromatographic(HPLC) fingerprints of Cassia seed,a traditional Chinese medicine(TCM),were developed by means of the chromatograms at two wavelengths of 238 and 282 nm.Then,the two data sets we...High performance liquid chromatographic(HPLC) fingerprints of Cassia seed,a traditional Chinese medicine(TCM),were developed by means of the chromatograms at two wavelengths of 238 and 282 nm.Then,the two data sets were combined into one matrix.The application of principal component analysis(PCA) for this data matrix showed that the samples were clustered into four groups in accordance with the plant sources and preparation procedures.Furthermore,partial least squares(PLS),back propagation artificial neural...展开更多
hree wavelength spectrophotometry was used to determine the content ofbenoxinate hydrochloride.Using this method could effectively eliminate the devia-tion of background absorption caused by the change of concentratio...hree wavelength spectrophotometry was used to determine the content ofbenoxinate hydrochloride.Using this method could effectively eliminate the devia-tion of background absorption caused by the change of concentration and the errorof quantitative anaiysis caused by asymmetric peaks, and at the same time the lean-ing degree of base line was corrected.This method was simple, the recovery was98. 62% 101. 86% and the coefficient of variation was 0. 551%.展开更多
Based on ullstability of inversion algorithms of the lidar equation caused by molecular scattering,a new algorithm to derive both the aerosol extinction to backscatter ratio and the extinchon coefficient profile is pr...Based on ullstability of inversion algorithms of the lidar equation caused by molecular scattering,a new algorithm to derive both the aerosol extinction to backscatter ratio and the extinchon coefficient profile is proposed in this paper.As shown in numerical experiments,in case of a ground-based lidar,the error in the aerosol optical depth solution can be less than 10%,and the error of < 6.7 in the aerosol exhnction to backscatter ratio can be obtained if the error in the lidar constant is<6%;and in the case of a spaceborne lidar,the present method can be ugh to determine the lidar constant at a short wavelength with an accuracy of being better than 1%.展开更多
A joint probability density is derived for wavelengths and wave heights. It is asymmetric and depends only on the spectral bandwidth epsilon defined by Cartwright and Longuet-Higgins (1956). After that a theoretical p...A joint probability density is derived for wavelengths and wave heights. It is asymmetric and depends only on the spectral bandwidth epsilon defined by Cartwright and Longuet-Higgins (1956). After that a theoretical probability density for wave steepness is obtained. It tends to Rayleigh distribution as epsilon --> 0. A comparison between theoretical steepness distribution and laboratory experiment result shows good agreement.展开更多
In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean trans- mission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOG...In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean trans- mission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOGs), three types of polarization-maintaining (PM) fibers are tested by using a 60Co γ-radiation source. The observed different mean wave- length shift (MWS) behaviors for different fibers are interpreted by color-center theory involving dose rate-dependent absorption bands in ultraviolet and visible ranges and total dose-dependent near-infrared absorption bands. To evaluate the mean wavelength variation in a fiber coil and the induced scale factor change for space-borne IFOGs under low radiation doses in a space environment, the influence of dose rate on the mean wavelength is investigated by testing four germanium (Ge) doped fibers and two germanium-phosphorus (Ge-P) codoped fibers irradiated at different dose rates. Experimental results indicate that the Ge-doped fibers show the least mean wavelength shift during irradiation and their mean wavelength of optical signal transmission in fibers will shift to a shorter wavelength in a low-dose-rate radiation environment. Finally, the change in the scale factor of IFOG resulting from the mean wavelength shift is estimated and tested, and it is found that the significant radiation-induced scale factor variation must be considered during the design of space-borne IFOGs.展开更多
We derive the expressions of the first and second harmonic signals on the basis of absorption spectral and lock-in theories, and determine the gas concentration according to the ratio of second and first harmonic sign...We derive the expressions of the first and second harmonic signals on the basis of absorption spectral and lock-in theories, and determine the gas concentration according to the ratio of second and first harmonic signals. It is found that the X and Y components of the harmonic signals are influenced by the phase shift between the detection and reference signal, and the phase shift can be any value in a range from 0 to 2π, which is different from the results obtained previously. Meanwhile, an additional item caused by the residual amplitude modulation will make a great contribution to the second harmonic signal, and may not be neglected under low absorbance conditions. Theoretical analysis indicates that subtracting back-ground signal from the second harmonic signal can remove the influence of this item, and can improve the measurement accuracy of gas concentration. On this basis, we select the transition of CO2 at 6527.64 cm-1 to analyse the approximation errors during the derivation by numerical simulation and then measure the CO2 concentration under low absorbance conditions, with absorbance varying from 1‰ to 6‰.展开更多
The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength las...The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength laser ablation, the 266 nm wavelength laser ablation has less thermal effects, resulting in a better crater morphology on the coal pellets. Besides, the 266 nm wavelength laser ablation also provides better laser-sample coupling and less plasma shielding, resulting in a higher carbon line intensity and better signal reproducibility. The carbon contents in the bituminous coal samples have better linearity with the line intensities of atomic carbon measured by the 266 nm wavelength than those measured by the 1064 nm wavelength. The partial least square (PLS) model was established for the quantitative analysis of the carbon content in coal samples by LIBS. The results show that both of the 266 nm and 1064 nm wavelengths are capable of achieving good performance for the quantitative analysis of carbon content in coal using the PLS method.展开更多
Plant nitrogen (N) uptake is a good indicator of crop N status. In this study, a new method was designed to determine the central wavelength, optimal bandwidth and vegetation indices for predicting plant N uptake (...Plant nitrogen (N) uptake is a good indicator of crop N status. In this study, a new method was designed to determine the central wavelength, optimal bandwidth and vegetation indices for predicting plant N uptake (g N m-2) in winter wheat (Triticum aestivum L.). The data were collected from the ground-based hyperspectral reflectance measurements in eight field experiments on winter wheat of different years, eco-sites, varieties, N rates, sowing dates, and densities. The plant N uptake index (PNUI) based on NDVI of 807 nm combined with 736 nm was selected as the optimal vegetation index, and a linear model was developed with R2 of 0.870 and RMSE of 1.546 g N m-2 for calibration, and R2 of 0.834, RMSE of 1.316 g N m-2, slope of 0.934, and intercept of 0.001 for validation. Then, the effect of the bandwidth of central wavelengths on model performance was determined based on the interaction between central wavelength and bandwidth expansion. The results indicated that the optimal bandwidth varies with the changes of the central wavelength and with the interaction between the two bands in one vegetation index. These findings are important for prediction and diagnosis of plant N uptake more precise and accurate in crop management.展开更多
AIM: To investigate the effects of spectral composition and light intensity on natural refractive development in guinea pigs.METHODS: A total of 124 pigmented guinea pigs(2-week-old) were randomly assigned to three gr...AIM: To investigate the effects of spectral composition and light intensity on natural refractive development in guinea pigs.METHODS: A total of 124 pigmented guinea pigs(2-week-old) were randomly assigned to three groups at high(Hi;4000 lx), medium(Me;400 lx) and low(Lo;50 lx) light intensities under a 12:12 light/dark cycle for 6 wk. Each group was subdivided into subgroups with the following spectra: broad spectrum Solux halogen light(BS), 600 nm above-filtered continuous spectrum(600F), 530 nm above-filtered continuous spectrum(530F), and 480 nm above-filtered continuous spectrum(480F;HiBS: n=10, Hi600F: n=10, Hi530F: n=10, Hi480F: n=10, MeBS: n=10, Me600F: n=10, Me530F: n=10, Me480F: n=10, LoBS: n=11, Lo600F: n=12, Lo530F: n=10, Lo480F: n=11). Refractive error, corneal curvature radius, and axial dimensions were determined by cycloplegic retinoscopy, photokeratometry, and A-scan ultrasonography before and after 2, 4, and 6 wk of treatment. Average changes from both eyes in the ocular parameters and refractive error were compared among different subgroups.RESULTS: After 6 wk of exposure, high-intensity lighting enhanced hyperopic shift;medium-and low-intensity lighting enhanced myopic shift(P<0.05). Under the same spectrum, axial increase was larger in the low light intensity group than in the medium and high light intensity groups(HiBS: 0.65±0.02 mm, MeBS: 0.67±0.01 mm, LoBS:0.82±0.02 mm;Hi600 F: 0.64±0.02 mm, Me600F: 0.67±0.01 mm, Lo600F: 0.81±0.01 mm;Hi530F: 0.64±0.02 mm, Me530F: 0.67±0.01 mm, Lo530F: 0.73±0.02 mm;Hi480F: 0.64±0.01 mm, Me480F: 0.66±0.01 mm, Lo480F: 0.72±0.02 mm;P<0.05). Under 400 lx, there was a faster axial increase in the MeBS group than in the Me480F group(P<0.05). Under 50 lx, axial length changes were significantly larger in LoBS and Lo600F than in Lo530F and Lo480F(P<0.01).CONCLUSION: Under high-intensity lighting, high light intensity rather than spectrum distributions that inhibits axial increase. Under medium-and low-intensity lighting, filtering out the long wavelength inhibits axial growth in juvenile guinea pigs.展开更多
Sensitive detection of hydrogen sulfide(H2S) has been performed by means of wavelength modulation spectroscopy(WMS) near 1.578 μm. With the scan amplitude and the stability of the background baseline taken into a...Sensitive detection of hydrogen sulfide(H2S) has been performed by means of wavelength modulation spectroscopy(WMS) near 1.578 μm. With the scan amplitude and the stability of the background baseline taken into account, the response time is 4 s for a 0.8 L multi-pass cell with a 56.7 m effective optical path length. Moreover, the linearity has been tested in the 0–50 ppmv range. The detection limit achievable by the Allan variance is 224 ppb within 24 s under room temperature and ambient pressure conditions. This tunable diode laser absorption spectroscopy(TDLAS) system for H2 S detection has the feasibility of real-time online monitoring in many applications.展开更多
A dual wavelength differential first derivative spectrophotometric method has been developed to standardize the concentration of a saturated aqueous solution of carbon monoxide (CO) as the standard and to identify and...A dual wavelength differential first derivative spectrophotometric method has been developed to standardize the concentration of a saturated aqueous solution of carbon monoxide (CO) as the standard and to identify and to determine CO formed during the microsomal metabolism of xenobiotics in vitro. The method can significantly eliminate the background interference in the assay media and increase the quantitative accuracy and the sensitivity. There is a good linear relationship between CO concentration in the range of 2~10 μmol·L 1 CO and the distance D between the first derivative peak at 415 nm amd valley at 426 nm with r=0.9999(n=5),the regression equation being C (mmol·L 1 )=17.6D 0.4, the detection limit lower than 0.1 μmol·L 1 CO. The average recoveries of CO from the assay system and the sample were 102.1%, RSD=2.9% (n=7) and 79.7%, RSD=6.8% (n=12),respectively. The RSD of within day was 4.4%(n=18),and the RSD of day to day was 6.1%(n=16). By this method, four trihaloanilines and one trihalobenzene were tested, the results showed that only 2,4,5 trifluoroaniline could be converted to CO by the incubation with rat hepatic microsomes, NADPH and oxygen, the ability of phenobarbital or dexamethasone to induce rat hepatic microsomes to catalyze CO formation was 3 or 8 times higher than that of the control.展开更多
Single photon sources are key components for quantum technologies such as quantum communication, computing and metrology. A key challenge towards the realization of global quantum networks are transmission losses in o...Single photon sources are key components for quantum technologies such as quantum communication, computing and metrology. A key challenge towards the realization of global quantum networks are transmission losses in optical fibers. Therefore, single photon sources are required to emit at the low-loss telecom wavelength bands. However, an ideal telecom wavelength single photon source has yet to be discovered. Here, we review the recent progress in realizing such sources. We start with single photon emission based on atomic ensembles and spontaneous parametric down conversion, and then focus on solid-state emitters including semiconductor quantum dots, defects in silicon carbide and carbon nanotubes. In conclusion, some state-of-the-art applications are highlighted.展开更多
InAsSb epilayers with a cutoff wavelength of 4.8 μm have been successfully grown on InAs substrates by one-step liquid phase epitaxy (LPE) technology. The epilayers were characterized by X-ray diffraction (XRD), ...InAsSb epilayers with a cutoff wavelength of 4.8 μm have been successfully grown on InAs substrates by one-step liquid phase epitaxy (LPE) technology. The epilayers were characterized by X-ray diffraction (XRD), Fourier transform infrared (PTIR) transmittance measurements and scanning electron microscopy (SEM). The influence of different growth conditions on the optical and structural properties of the materials was studied. The results revealed that the good crystalline quality, mirror smooth surface and flat interface of InAsSb epilayers were achieved. They benefited from optimized growth conditions, i.e., sufficient homogeneity of the growth melt and a very slow cooling rate.展开更多
SrZnO2 : Eu^3 + , Li^+ phosphor powder by long wavelength UV excitation was synthesized by conventional solid-state reaction method. XRD and PL were employed to characterize their properties. The resuits show that ...SrZnO2 : Eu^3 + , Li^+ phosphor powder by long wavelength UV excitation was synthesized by conventional solid-state reaction method. XRD and PL were employed to characterize their properties. The resuits show that Eu^3+ ions preferentially occupy Sr^2+ asymmetry cationic sites, thus emitting 612 nm red light originated from ^5D0 to ^7F2 transition. The luminescent intensity can be greatly enhanced with incorporation of Li^+ ions. The excitation efficiency in range of 350 - 400 nm also increases greatly due to incorporating Li ^+ ions. SrZnO2 : Eu^3 + , Li^+ is a promising redemitting phosphor by long wavelength UV excitation.展开更多
基金partially supported by National Natural Science Foundation of China(Nos.U23A2077,12175278,12205072)the National Magnetic Confinement Fusion Science Program of China(Nos.2019YFE0304002,2018YFE0303103)+2 种基金the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences(2021)the University Synergy Innovation Program of Anhui Province(No.GXXT2021-029)。
文摘A vacuum ultraviolet(VUV)spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak(EAST).In this study,wavelength calibration for the VUV spectroscopy is achieved utilizing a zinc lamp.The grating angle and charge-coupled device(CCD)position are carefully calibrated for different wavelength positions.The wavelength calibration of the VUV spectroscopy is crucial for improving the accuracy of impurity spectral data,and is required to identify more impurity spectral lines for impurity transport research.Impurity spectra of EAST plasmas have also been obtained in the wavelength range of 50–300 nm with relatively high spectral resolution.It is found that the impurity emissions in the edge region are still dominated by low-Z impurities,such as carbon,oxygen,and nitrogen,albeit with the application of fulltungsten divertors on the EAST tokamak.
基金This work was supported by ZTE Industry⁃University⁃Institute Coopera⁃tion Funds under Grant No.IA20230614004.
文摘Wavelength selective switch(WSS)is the crucial component in the reconfigurable optical add/drop multiplexer(ROADM),which plays a pivotal role in the next-generation all-optical networks.We present a compact architecture of twin 1×40 liquid crystal on silicon(LCoS)-based WSS,which can be regarded as a 4f system in the wavelength direction and a 2f system in the switching direction.It is designed with theoretical analysis and simulation investigation.Polarization multiplexing is employed for two sources of twin WSS by polarization con-version before the common optical path.The WSS system attains a coupling efficacy exceeding 96%for 90%of the ports through simulation optimization.The 3 dB bandwidth can be achieved by more than 44 GHz at a 50 GHz grid for all 120 channels at all deflection ports.This work establishes a solid foundation for developing high-performance WSS with larger port counts.
基金Supported by“863” high technology research and developmentprogram,No.863- 30 7- 1 4 - 2 (0 1 )
文摘The wavelength routing technology applied to computer interconnection networks is introduced in this paper.By analyzing the relation between wavelength and network routing,we describe a concept of wavelength used as network IP address,and propose a wavelength routing topology to extend the scale of a network and realize the scalability of the network.Moreover,a twin wavelength ring network that is being developed in our laboratory to implement and test the function of wavelength routing is presented,and the main units of the twin wavelength ring network are presented also.According to the testing results based on a single wavelength ring network,it proves that the optical interconnection technology is a perfect technology to provide enough communication bandwidth for computer network.
基金the financial support for this study by the National Natural Science Foundation of China(No.NSFC20562009)the Jiangxi Province Natural Science Foundation(No.JXNSF0620041)the State Key Laboratory of Food Science and Technology of Nanchang University(Nos.SKLF-MB200807 and SKLF-TS200819)
文摘High performance liquid chromatographic(HPLC) fingerprints of Cassia seed,a traditional Chinese medicine(TCM),were developed by means of the chromatograms at two wavelengths of 238 and 282 nm.Then,the two data sets were combined into one matrix.The application of principal component analysis(PCA) for this data matrix showed that the samples were clustered into four groups in accordance with the plant sources and preparation procedures.Furthermore,partial least squares(PLS),back propagation artificial neural...
文摘hree wavelength spectrophotometry was used to determine the content ofbenoxinate hydrochloride.Using this method could effectively eliminate the devia-tion of background absorption caused by the change of concentration and the errorof quantitative anaiysis caused by asymmetric peaks, and at the same time the lean-ing degree of base line was corrected.This method was simple, the recovery was98. 62% 101. 86% and the coefficient of variation was 0. 551%.
文摘Based on ullstability of inversion algorithms of the lidar equation caused by molecular scattering,a new algorithm to derive both the aerosol extinction to backscatter ratio and the extinchon coefficient profile is proposed in this paper.As shown in numerical experiments,in case of a ground-based lidar,the error in the aerosol optical depth solution can be less than 10%,and the error of < 6.7 in the aerosol exhnction to backscatter ratio can be obtained if the error in the lidar constant is<6%;and in the case of a spaceborne lidar,the present method can be ugh to determine the lidar constant at a short wavelength with an accuracy of being better than 1%.
基金National Natural Foundation of China.(No.49676277)
文摘A joint probability density is derived for wavelengths and wave heights. It is asymmetric and depends only on the spectral bandwidth epsilon defined by Cartwright and Longuet-Higgins (1956). After that a theoretical probability density for wave steepness is obtained. It tends to Rayleigh distribution as epsilon --> 0. A comparison between theoretical steepness distribution and laboratory experiment result shows good agreement.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61007040)
文摘In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean trans- mission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOGs), three types of polarization-maintaining (PM) fibers are tested by using a 60Co γ-radiation source. The observed different mean wave- length shift (MWS) behaviors for different fibers are interpreted by color-center theory involving dose rate-dependent absorption bands in ultraviolet and visible ranges and total dose-dependent near-infrared absorption bands. To evaluate the mean wavelength variation in a fiber coil and the induced scale factor change for space-borne IFOGs under low radiation doses in a space environment, the influence of dose rate on the mean wavelength is investigated by testing four germanium (Ge) doped fibers and two germanium-phosphorus (Ge-P) codoped fibers irradiated at different dose rates. Experimental results indicate that the Ge-doped fibers show the least mean wavelength shift during irradiation and their mean wavelength of optical signal transmission in fibers will shift to a shorter wavelength in a low-dose-rate radiation environment. Finally, the change in the scale factor of IFOG resulting from the mean wavelength shift is estimated and tested, and it is found that the significant radiation-induced scale factor variation must be considered during the design of space-borne IFOGs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51176085 and 51206086)
文摘We derive the expressions of the first and second harmonic signals on the basis of absorption spectral and lock-in theories, and determine the gas concentration according to the ratio of second and first harmonic signals. It is found that the X and Y components of the harmonic signals are influenced by the phase shift between the detection and reference signal, and the phase shift can be any value in a range from 0 to 2π, which is different from the results obtained previously. Meanwhile, an additional item caused by the residual amplitude modulation will make a great contribution to the second harmonic signal, and may not be neglected under low absorbance conditions. Theoretical analysis indicates that subtracting back-ground signal from the second harmonic signal can remove the influence of this item, and can improve the measurement accuracy of gas concentration. On this basis, we select the transition of CO2 at 6527.64 cm-1 to analyse the approximation errors during the derivation by numerical simulation and then measure the CO2 concentration under low absorbance conditions, with absorbance varying from 1‰ to 6‰.
基金supported by National Natural Science Foundation of China(No.51276100)National Basic Research Program of China(973 Program)(No.2013CB228501)
文摘The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength laser ablation, the 266 nm wavelength laser ablation has less thermal effects, resulting in a better crater morphology on the coal pellets. Besides, the 266 nm wavelength laser ablation also provides better laser-sample coupling and less plasma shielding, resulting in a higher carbon line intensity and better signal reproducibility. The carbon contents in the bituminous coal samples have better linearity with the line intensities of atomic carbon measured by the 266 nm wavelength than those measured by the 1064 nm wavelength. The partial least square (PLS) model was established for the quantitative analysis of the carbon content in coal samples by LIBS. The results show that both of the 266 nm and 1064 nm wavelengths are capable of achieving good performance for the quantitative analysis of carbon content in coal using the PLS method.
基金supported by the National High-Tech R&DProgram of China (2011AA100703)the Natural Science Foundation of Jiangsu Province,China (BK2010453)+1 种基金the Science Technology Support Plan of Jiangsu Province,China (BE2011351)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Plant nitrogen (N) uptake is a good indicator of crop N status. In this study, a new method was designed to determine the central wavelength, optimal bandwidth and vegetation indices for predicting plant N uptake (g N m-2) in winter wheat (Triticum aestivum L.). The data were collected from the ground-based hyperspectral reflectance measurements in eight field experiments on winter wheat of different years, eco-sites, varieties, N rates, sowing dates, and densities. The plant N uptake index (PNUI) based on NDVI of 807 nm combined with 736 nm was selected as the optimal vegetation index, and a linear model was developed with R2 of 0.870 and RMSE of 1.546 g N m-2 for calibration, and R2 of 0.834, RMSE of 1.316 g N m-2, slope of 0.934, and intercept of 0.001 for validation. Then, the effect of the bandwidth of central wavelengths on model performance was determined based on the interaction between central wavelength and bandwidth expansion. The results indicated that the optimal bandwidth varies with the changes of the central wavelength and with the interaction between the two bands in one vegetation index. These findings are important for prediction and diagnosis of plant N uptake more precise and accurate in crop management.
基金Supported by National Natural Science Foundation of China(No.81770958)
文摘AIM: To investigate the effects of spectral composition and light intensity on natural refractive development in guinea pigs.METHODS: A total of 124 pigmented guinea pigs(2-week-old) were randomly assigned to three groups at high(Hi;4000 lx), medium(Me;400 lx) and low(Lo;50 lx) light intensities under a 12:12 light/dark cycle for 6 wk. Each group was subdivided into subgroups with the following spectra: broad spectrum Solux halogen light(BS), 600 nm above-filtered continuous spectrum(600F), 530 nm above-filtered continuous spectrum(530F), and 480 nm above-filtered continuous spectrum(480F;HiBS: n=10, Hi600F: n=10, Hi530F: n=10, Hi480F: n=10, MeBS: n=10, Me600F: n=10, Me530F: n=10, Me480F: n=10, LoBS: n=11, Lo600F: n=12, Lo530F: n=10, Lo480F: n=11). Refractive error, corneal curvature radius, and axial dimensions were determined by cycloplegic retinoscopy, photokeratometry, and A-scan ultrasonography before and after 2, 4, and 6 wk of treatment. Average changes from both eyes in the ocular parameters and refractive error were compared among different subgroups.RESULTS: After 6 wk of exposure, high-intensity lighting enhanced hyperopic shift;medium-and low-intensity lighting enhanced myopic shift(P<0.05). Under the same spectrum, axial increase was larger in the low light intensity group than in the medium and high light intensity groups(HiBS: 0.65±0.02 mm, MeBS: 0.67±0.01 mm, LoBS:0.82±0.02 mm;Hi600 F: 0.64±0.02 mm, Me600F: 0.67±0.01 mm, Lo600F: 0.81±0.01 mm;Hi530F: 0.64±0.02 mm, Me530F: 0.67±0.01 mm, Lo530F: 0.73±0.02 mm;Hi480F: 0.64±0.01 mm, Me480F: 0.66±0.01 mm, Lo480F: 0.72±0.02 mm;P<0.05). Under 400 lx, there was a faster axial increase in the MeBS group than in the Me480F group(P<0.05). Under 50 lx, axial length changes were significantly larger in LoBS and Lo600F than in Lo530F and Lo480F(P<0.01).CONCLUSION: Under high-intensity lighting, high light intensity rather than spectrum distributions that inhibits axial increase. Under medium-and low-intensity lighting, filtering out the long wavelength inhibits axial growth in juvenile guinea pigs.
基金supported by the Special Fund for Basic Research on Scientific Instruments of the Chinese Academy of Sciences(Grant No.YZ201315)the National Natural Science Foundation of China(Grant Nos.11204320,41405034,and 11204319)
文摘Sensitive detection of hydrogen sulfide(H2S) has been performed by means of wavelength modulation spectroscopy(WMS) near 1.578 μm. With the scan amplitude and the stability of the background baseline taken into account, the response time is 4 s for a 0.8 L multi-pass cell with a 56.7 m effective optical path length. Moreover, the linearity has been tested in the 0–50 ppmv range. The detection limit achievable by the Allan variance is 224 ppb within 24 s under room temperature and ambient pressure conditions. This tunable diode laser absorption spectroscopy(TDLAS) system for H2 S detection has the feasibility of real-time online monitoring in many applications.
文摘A dual wavelength differential first derivative spectrophotometric method has been developed to standardize the concentration of a saturated aqueous solution of carbon monoxide (CO) as the standard and to identify and to determine CO formed during the microsomal metabolism of xenobiotics in vitro. The method can significantly eliminate the background interference in the assay media and increase the quantitative accuracy and the sensitivity. There is a good linear relationship between CO concentration in the range of 2~10 μmol·L 1 CO and the distance D between the first derivative peak at 415 nm amd valley at 426 nm with r=0.9999(n=5),the regression equation being C (mmol·L 1 )=17.6D 0.4, the detection limit lower than 0.1 μmol·L 1 CO. The average recoveries of CO from the assay system and the sample were 102.1%, RSD=2.9% (n=7) and 79.7%, RSD=6.8% (n=12),respectively. The RSD of within day was 4.4%(n=18),and the RSD of day to day was 6.1%(n=16). By this method, four trihaloanilines and one trihalobenzene were tested, the results showed that only 2,4,5 trifluoroaniline could be converted to CO by the incubation with rat hepatic microsomes, NADPH and oxygen, the ability of phenobarbital or dexamethasone to induce rat hepatic microsomes to catalyze CO formation was 3 or 8 times higher than that of the control.
基金financially supported by the ERC Starting Grant No.715770(QD-NOMS)the National Natural Science Foundation of China(No.61728501)
文摘Single photon sources are key components for quantum technologies such as quantum communication, computing and metrology. A key challenge towards the realization of global quantum networks are transmission losses in optical fibers. Therefore, single photon sources are required to emit at the low-loss telecom wavelength bands. However, an ideal telecom wavelength single photon source has yet to be discovered. Here, we review the recent progress in realizing such sources. We start with single photon emission based on atomic ensembles and spontaneous parametric down conversion, and then focus on solid-state emitters including semiconductor quantum dots, defects in silicon carbide and carbon nanotubes. In conclusion, some state-of-the-art applications are highlighted.
基金provided by the National Natural Science Foundation of China (No. 60777022)the Program for Young Excellent Tal-ents in Tongji University
文摘InAsSb epilayers with a cutoff wavelength of 4.8 μm have been successfully grown on InAs substrates by one-step liquid phase epitaxy (LPE) technology. The epilayers were characterized by X-ray diffraction (XRD), Fourier transform infrared (PTIR) transmittance measurements and scanning electron microscopy (SEM). The influence of different growth conditions on the optical and structural properties of the materials was studied. The results revealed that the good crystalline quality, mirror smooth surface and flat interface of InAsSb epilayers were achieved. They benefited from optimized growth conditions, i.e., sufficient homogeneity of the growth melt and a very slow cooling rate.
文摘SrZnO2 : Eu^3 + , Li^+ phosphor powder by long wavelength UV excitation was synthesized by conventional solid-state reaction method. XRD and PL were employed to characterize their properties. The resuits show that Eu^3+ ions preferentially occupy Sr^2+ asymmetry cationic sites, thus emitting 612 nm red light originated from ^5D0 to ^7F2 transition. The luminescent intensity can be greatly enhanced with incorporation of Li^+ ions. The excitation efficiency in range of 350 - 400 nm also increases greatly due to incorporating Li ^+ ions. SrZnO2 : Eu^3 + , Li^+ is a promising redemitting phosphor by long wavelength UV excitation.