Hydrogen is considered one of the most ideal future energy carriers.The safe storage and convenient transportation of hydrogen are key factors for the utilization of hydrogen energy.In the current investigation,two-di...Hydrogen is considered one of the most ideal future energy carriers.The safe storage and convenient transportation of hydrogen are key factors for the utilization of hydrogen energy.In the current investigation,two-dimensional vanadium carbide(VC) was prepared by an etching method using V_(4)AlC_(3) as a precursor and then employed to enhance the hydrogen storage properties of MgH_(2).The studied results indicate that VC-doped MgH_(2) can absorb hydrogen at room temperature and release hydrogen at 170℃. Moreover,it absorbs 5.0 wt.%of H_(2) within 9.8 min at 100℃ and desorbs 5.0 wt.% of H_(2) within 3.2 min at 300℃.The dehydrogenation apparent activation energy of VC-doped MgH_(2) is 89.3 ± 2.8 kJ/mol,which is far lower than that of additive-free MgH_(2)(138.5 ± 2.4 kJ/mol),respectively.Ab-initio simulations showed that VC can stretch Mg-H bonds and make the Mg-H bonds easier to break,which is responsible for the decrease of dehydrogenation temperature and conducive to accelerating the diffusion rate of hydrogen atoms,thus,the hydrogen storage properties of MgH_(2) are remarkable improved through addition of VC.展开更多
The signs of the electric field markers in Figs.2 and 4 of the paper[Chin.Phys.B 32104211(2023)]have been corrected.These modifications do not affect the results derived in the paper.
A new symplectic geometrical high-frequency approximation method for solving the propagation of electromagnetic wave in the two-dimensional inhomogeneous medium is used in this paper. The propagating caustic problem o...A new symplectic geometrical high-frequency approximation method for solving the propagation of electromagnetic wave in the two-dimensional inhomogeneous medium is used in this paper. The propagating caustic problem of electromagnetic wave is translated into non-caustic problem by the coordinate transform on the symplectic space. The high-frequency approximation solution that includes the caustic region is obtained with the method combining with the geometrical optics. The drawback that the solution in the caustic region can not be obtained with geometrical optics is overcome by this method. The results coincide well with that of finite element method.展开更多
The conventional approach to analysis the buckling of rectangular laminates containing an embedded delamination subjected to the in-plane loading is to simplify the laminate as a beam-plate from which the predicted bu...The conventional approach to analysis the buckling of rectangular laminates containing an embedded delamination subjected to the in-plane loading is to simplify the laminate as a beam-plate from which the predicted buckling load decreases as the length of the laminate increases. Two-dimensional analyses are employed in this paper by extending the one-dimensional model to take into consideration of the influence of the delamination width on the buckling performance of the laminates. The laminate is simply supported containing a through width delamination. A new parameterβ defined as the ratio of delamination length to delamination width is introduced with an emphasis on the influence of the delamination size. It is found that (i) when the ratio β is greater than one snap-through buckling prevails, the buckling load is determined by the delamination size and depth only; (ii) as the ratio β continues to increase, the buckling load will approach to a constant value. Solutions are verified with the well established results and are found in good agreement with the latter.展开更多
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal ...A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal excitation is simulated by the finite element method. Comparisons between the two theories are made based on their numerical results. It is found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur for large amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features of nonlinear wave and can be used instead of the fully nonlinear theory.展开更多
This paper establishes the integral theory for the dynamics of nonlinear nonholonomic system in noninertial reference frame. Firstly, based on the Routh equation of the relative motion of nonlinear nonholonomic system...This paper establishes the integral theory for the dynamics of nonlinear nonholonomic system in noninertial reference frame. Firstly, based on the Routh equation of the relative motion of nonlinear nonholonomic system gives the first integral of the system. Secondly, by using cyclic integral or energy integral reduces the order of the equation and obtains generalized Routh equation and Whittaker equation respectively. Thirdly, derives canonical equation and variation equation and by using the first integral constructs integral invariant. And then, establishes the basic integral variants and the integral invariant of Poincare-Cartan type. Finally, we give a series of deductions.展开更多
Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moi...Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moisture stabilities.In particular, the 2D perovskite devices have shown better promise for optoelectronic applications.However, tunability of optoelectronic properties is often demanded to improve the device performance.Herein, we adopt a newly method to tune the electronic properties of 2D perovskite by introducing pseudohalide into the structure.In this work, we designed a pseudohalidesubstituted 2D perovskite by substituting the out-of-plane halide with pseudohalide and studied the electronic and excitonic properties of 2D-BA2MX4 and 2D-BA2MX2Ps2(M=Ge^(2+), Sn^(2+), and Pb^(2+);X=I;Ps=NCO, NCS, OCN, SCN, Se CN).We revealed the dependence of electronic properties including band gaps, composition of band edges, bonding characteristics, work functions, effective masses, and exciton binding energies on different pseudohalides substituted in 2D perovskite.Our results indicate that the substitution of pseudohalide in 2D perovskites is energetically favorable and can significantly affect the bonding characteristics as well as the CBM and VBM that often play major role in determining their performance in optoelectronic devices.It is expected that the pseudohalide substitution will be helpful in developing more advanced optoelectronic device based on 2D perovskite by optimizing band alignment and promoting charge extraction.展开更多
A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin i...A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin ionic conductor films are obtained from the three-dimensional(3D) equations by power series expansions in the film thickness coordinate, retaining the lower-order equations. The thin-film equations for ionic conductors are combined with similar equations for one thin dielectric film to derive the 2D equations of thin sandwich films composed of a dielectric layer and two ionic conductor layers. A sandwich film in the literature, as an ionic cable, is analyzed as an example of the equations obtained in this paper. The numerical results show the effect of diffusion in addition to the conduction treated in the literature. The obtained theoretical model including both conduction and diffusion phenomena can be used to investigate the performance of ionic-conductor devices with any frequency.展开更多
In this paper,we report,for the first time,on the electrochemical catalytic activity of 2D titanium carbonitride MXene for hydrogen evolution reaction(HER).According to our study,2D titanium carbonitride exhibited muc...In this paper,we report,for the first time,on the electrochemical catalytic activity of 2D titanium carbonitride MXene for hydrogen evolution reaction(HER).According to our study,2D titanium carbonitride exhibited much higher electrocatalytic activity than its carbide analogues,achieving an onset overpotential of 53 mV and Tafel slope of 86 mV dec^(-1),superior to the titanium carbide with onset overpotential of 649 mV and Tafel slope of 303 mV dec^(-1).The obtained onset overpotential for 2D titanium carbonitride is lower than those of all the reported transition metal carbides MXene catalysts without additives,so far.Density functional theory calculations were conducted to further understand the electrochemical performance.The calculation results show that a greater number of occupied states are active for Ti_(3)CNO_(2),revealing free energy for the adsorption of atomic hydrogen closer to 0 than that of Ti_(3)C_(2)O_(2).Both experimental and calculation studies demonstrate the excellent electrocatalytic behavior of titanium carbonitride.The investigation of 2D titanium carbonitride opens up a promising paradigm for the conscious design of high-performance non-precious metal catalyst for hydrogen generation.展开更多
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are t...By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.展开更多
Two-dimensional materials have a wide range of applications in many aspects due to their unique properties. Here we carry out a detailed structural search and design of the BP2using the first principles method, and fi...Two-dimensional materials have a wide range of applications in many aspects due to their unique properties. Here we carry out a detailed structural search and design of the BP2using the first principles method, and find a new PMM2 sheet.The analysis of the phonon dispersive curves shows that the 2D PMM2 is dynamic stable. The study of molecular dynamics shows that the 2D PMM2 can be stable under high temperature, even at 600 K. Most importantly, when a suitable strain is applied, the structure can exhibit other electronic properties such as direct band gap semiconductor. In addition, the small strain can tune the band gap value of the PMM2 structure to around 1.4 e V, which is very close to the ideal band gap of solar materials. Therefore, the 2D PMM2 may have potential applications in the field of photovoltaic materials.展开更多
We study the stability analysis and control synthesis of uncertain discrete-time two-dimensional(2D) systems.The mathematical model of the discrete-time 2D system is established upon the well-known Roesser model,and...We study the stability analysis and control synthesis of uncertain discrete-time two-dimensional(2D) systems.The mathematical model of the discrete-time 2D system is established upon the well-known Roesser model,and the uncertainty phenomenon,which appears typically in practical environments,is modeled by a convex bounded(polytope type) uncertain domain.The stability analysis and control synthesis of uncertain discrete-time 2D systems are then developed by applying the Lyapunov stability theory.In the processes of stability analysis and control synthesis,the obtained stability/stabilzaition conditions become less conservative by applying some novel relaxed techniques.Moreover,the obtained results are formulated in the form of linear matrix inequalities,which can be easily solved via standard numerical software.Finally,numerical examples are given to demonstrate the effectiveness of the obtained results.展开更多
In this paper,two operators are defined,and their underlying properties are found,then the R-dual relationship is classified from the aspect of the operators defined.Furthermore,the commutability of the bases of const...In this paper,two operators are defined,and their underlying properties are found,then the R-dual relationship is classified from the aspect of the operators defined.Furthermore,the commutability of the bases of constructing R-dual sequence is discussed.In particular,SR-dual sequence is defined and is clarified.At last an example is given.展开更多
From the perspective of the frame theory,with the analysis of animal metaphors in Cantonese nursery rhymes,this paper discusses the feasible translation strategies,suggesting that direct translation can be adopted for...From the perspective of the frame theory,with the analysis of animal metaphors in Cantonese nursery rhymes,this paper discusses the feasible translation strategies,suggesting that direct translation can be adopted for animal metaphors that can evoke the similar cognitive frame in both Cantonese and English cultural contexts.As for those without identical frame,translation without the original vehicle can be used for the metaphors of physicalification,while translation with annotation can be applied for the metaphors of personification.展开更多
Through the analysis of the status quo of translation teaching in China, the author holds that it is necessary to explore new approaches in this regard. Because college students tend to be affected by the conceptual m...Through the analysis of the status quo of translation teaching in China, the author holds that it is necessary to explore new approaches in this regard. Because college students tend to be affected by the conceptual meaning of the original text, mistranslation may occur frequently in their translation. In translating, one must be armed with linguistic knowledge as well as cognitive knowledge. Accordingly, by applying frame theory to translation teaching, teachers can guide students to construe the original meaning on the lexical, syntactic and textual level, so that they may effectively avoid semantic errors in translation. In view of students' inadequate background knowledge, teachers should guide them to enlarge their knowledge scope and enrich their encyclopedic knowledge.展开更多
Organometallic nanosheets are a versatile platform for design of efficient electrocatalyst materials due to their high surface area and uniform dispersion of metal active sites.In this paper,we systematically investig...Organometallic nanosheets are a versatile platform for design of efficient electrocatalyst materials due to their high surface area and uniform dispersion of metal active sites.In this paper,we systematically investigate the electrocatalytic performance of the first transition metal series TM3–C12S12 monolayers on CO2 using spin-polarized density functional theory.The calculations show that M3–C12S12 exhibits excellent catalytic activity and selectivity in the catalytic reduction in CO2.The main reduction products of Sc,Ti,and Cr are CH4.V,Mn,Fe and Zn mainly produce HCOOH,and Co produces HCHO,while CO is the main product for Ni and Cu.For Sc,Ti,and Cr,the overpotentials are>0.7 V,while for V,Mn,Fe,Co,Ni,Cu,Zn,the overpotentials are very low and range from 0.27 to 0.47 V.Therefore,our results indicate that many of the M3–C12S12 monolayers are expected to be excellent and efficient CO2 reduction catalysts.展开更多
Atoms in the microscopic world are the basic building blocks of the macroscopic world. In this work, we construct an atomic-scale electromagnetic theory that bridges optics in the microscopic and macroscopic worlds. A...Atoms in the microscopic world are the basic building blocks of the macroscopic world. In this work, we construct an atomic-scale electromagnetic theory that bridges optics in the microscopic and macroscopic worlds. As the building block of the theory, we use the microscopic polarizability to describe the optical response of a single atom, solve the transport of electromagnetic wave through a single atomic layer under arbitrary incident angle and polarization of the light beam, construct the single atomic layer transfer matrix for light transport across the atomic layer. Based on this transfer matrix, we get the analytical form of the dispersion relation, refractive index, and transmission/reflection coefficient of the macroscopic medium. The developed theory can handle single-layer and few-layers of homogeneous and heterogeneous 2D materials, investigate homogeneous 2D materials with various vacancies or insertion atomic-layer defects, study compound 2D materials with a unit cell composed of several elements in both the lateral and parallel directions with respect to the light transport.展开更多
As a unique art of language,humor is indispensable to human’s daily life,which reflects human's cognitive wisdom to⁃wards objective things and the society.The appreciation of humor mainly depends on the ability t...As a unique art of language,humor is indispensable to human’s daily life,which reflects human's cognitive wisdom to⁃wards objective things and the society.The appreciation of humor mainly depends on the ability to understand the unconventional use of language.Because humor plays an important role in daily life,psychologists,sociologists and linguists all try to explore its operation mechanism.HAPPY THEATER is a live comedy show by Zhejiang Satellite TV,inviting some movie and TV stars as guest actors,without lines or scripts.It is characterized by the ability to improvise in a high degree of performance and the use of humor in a flexible manner.The framework shifting theory is applied to analyze the humorous language of the program from the per⁃spective of cognitive linguistics in order to reveal the linguistic mechanism behind the humor.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.52261038 and 51861002)the Natural Science Foundation of Guangxi Province (Grant No.2018GXNSFAA294125)+1 种基金the Innovation-driven Development Foundation of Guangxi Province (Grant No.AA17204063)support by the Ministry of Science and Higher Education of the Russian Federation in the framework of the Increase Competitiveness Program of NUST "MISiS" (grant number K2-2020-046)。
文摘Hydrogen is considered one of the most ideal future energy carriers.The safe storage and convenient transportation of hydrogen are key factors for the utilization of hydrogen energy.In the current investigation,two-dimensional vanadium carbide(VC) was prepared by an etching method using V_(4)AlC_(3) as a precursor and then employed to enhance the hydrogen storage properties of MgH_(2).The studied results indicate that VC-doped MgH_(2) can absorb hydrogen at room temperature and release hydrogen at 170℃. Moreover,it absorbs 5.0 wt.%of H_(2) within 9.8 min at 100℃ and desorbs 5.0 wt.% of H_(2) within 3.2 min at 300℃.The dehydrogenation apparent activation energy of VC-doped MgH_(2) is 89.3 ± 2.8 kJ/mol,which is far lower than that of additive-free MgH_(2)(138.5 ± 2.4 kJ/mol),respectively.Ab-initio simulations showed that VC can stretch Mg-H bonds and make the Mg-H bonds easier to break,which is responsible for the decrease of dehydrogenation temperature and conducive to accelerating the diffusion rate of hydrogen atoms,thus,the hydrogen storage properties of MgH_(2) are remarkable improved through addition of VC.
文摘The signs of the electric field markers in Figs.2 and 4 of the paper[Chin.Phys.B 32104211(2023)]have been corrected.These modifications do not affect the results derived in the paper.
基金National Natural Science Foundation of China (No.69971001)
文摘A new symplectic geometrical high-frequency approximation method for solving the propagation of electromagnetic wave in the two-dimensional inhomogeneous medium is used in this paper. The propagating caustic problem of electromagnetic wave is translated into non-caustic problem by the coordinate transform on the symplectic space. The high-frequency approximation solution that includes the caustic region is obtained with the method combining with the geometrical optics. The drawback that the solution in the caustic region can not be obtained with geometrical optics is overcome by this method. The results coincide well with that of finite element method.
基金supported by the National Natural Science Foundation of China(Nos.11172113,11032005,and 11072037)
文摘The conventional approach to analysis the buckling of rectangular laminates containing an embedded delamination subjected to the in-plane loading is to simplify the laminate as a beam-plate from which the predicted buckling load decreases as the length of the laminate increases. Two-dimensional analyses are employed in this paper by extending the one-dimensional model to take into consideration of the influence of the delamination width on the buckling performance of the laminates. The laminate is simply supported containing a through width delamination. A new parameterβ defined as the ratio of delamination length to delamination width is introduced with an emphasis on the influence of the delamination size. It is found that (i) when the ratio β is greater than one snap-through buckling prevails, the buckling load is determined by the delamination size and depth only; (ii) as the ratio β continues to increase, the buckling load will approach to a constant value. Solutions are verified with the well established results and are found in good agreement with the latter.
文摘A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal excitation is simulated by the finite element method. Comparisons between the two theories are made based on their numerical results. It is found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur for large amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features of nonlinear wave and can be used instead of the fully nonlinear theory.
基金Project supported by the Natural Science Foundation of He’nan Province
文摘This paper establishes the integral theory for the dynamics of nonlinear nonholonomic system in noninertial reference frame. Firstly, based on the Routh equation of the relative motion of nonlinear nonholonomic system gives the first integral of the system. Secondly, by using cyclic integral or energy integral reduces the order of the equation and obtains generalized Routh equation and Whittaker equation respectively. Thirdly, derives canonical equation and variation equation and by using the first integral constructs integral invariant. And then, establishes the basic integral variants and the integral invariant of Poincare-Cartan type. Finally, we give a series of deductions.
基金funded by the National Key Research and Development Program of China (2017YFA0204800/2016YFA0202403)the Fundamental Research Funds for the Central Universities (2018CBLZ006)+5 种基金the National Natural Science Foundation of China (61604091 and 61674098)the 111 Project (B14041)the Changjiang Scholar and Innovative Research Team (IRT_14R33)the Chinese National 1000 Talents Plan program (1110010341)the China Postdoctoral Science foundation (2018M633455)the Fundamental Research Funds for the Central Universities (GK201903055)
文摘Two-dimensional(2D) layered organic-inorganic hybrid perovskites have attracted much more attention for some applications than their three-dimensional(3D) perovskite counterparts due to their promising thermal and moisture stabilities.In particular, the 2D perovskite devices have shown better promise for optoelectronic applications.However, tunability of optoelectronic properties is often demanded to improve the device performance.Herein, we adopt a newly method to tune the electronic properties of 2D perovskite by introducing pseudohalide into the structure.In this work, we designed a pseudohalidesubstituted 2D perovskite by substituting the out-of-plane halide with pseudohalide and studied the electronic and excitonic properties of 2D-BA2MX4 and 2D-BA2MX2Ps2(M=Ge^(2+), Sn^(2+), and Pb^(2+);X=I;Ps=NCO, NCS, OCN, SCN, Se CN).We revealed the dependence of electronic properties including band gaps, composition of band edges, bonding characteristics, work functions, effective masses, and exciton binding energies on different pseudohalides substituted in 2D perovskite.Our results indicate that the substitution of pseudohalide in 2D perovskites is energetically favorable and can significantly affect the bonding characteristics as well as the CBM and VBM that often play major role in determining their performance in optoelectronic devices.It is expected that the pseudohalide substitution will be helpful in developing more advanced optoelectronic device based on 2D perovskite by optimizing band alignment and promoting charge extraction.
基金Project supported by the National Natural Science Foundation of China(Nos.11672265,11202182,and 11621062)the Fundamental Research Funds for the Central Universities(Nos.2016QNA4026 and2016XZZX001-05)the Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering
文摘A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin ionic conductor films are obtained from the three-dimensional(3D) equations by power series expansions in the film thickness coordinate, retaining the lower-order equations. The thin-film equations for ionic conductors are combined with similar equations for one thin dielectric film to derive the 2D equations of thin sandwich films composed of a dielectric layer and two ionic conductor layers. A sandwich film in the literature, as an ionic cable, is analyzed as an example of the equations obtained in this paper. The numerical results show the effect of diffusion in addition to the conduction treated in the literature. The obtained theoretical model including both conduction and diffusion phenomena can be used to investigate the performance of ionic-conductor devices with any frequency.
基金supported by Tulane University.M.K.acknowledges the support by the US Department of Energy under EPSCoR Grant No.DE-SC0012432 with additional support from the Louisiana Board of Regents.
文摘In this paper,we report,for the first time,on the electrochemical catalytic activity of 2D titanium carbonitride MXene for hydrogen evolution reaction(HER).According to our study,2D titanium carbonitride exhibited much higher electrocatalytic activity than its carbide analogues,achieving an onset overpotential of 53 mV and Tafel slope of 86 mV dec^(-1),superior to the titanium carbide with onset overpotential of 649 mV and Tafel slope of 303 mV dec^(-1).The obtained onset overpotential for 2D titanium carbonitride is lower than those of all the reported transition metal carbides MXene catalysts without additives,so far.Density functional theory calculations were conducted to further understand the electrochemical performance.The calculation results show that a greater number of occupied states are active for Ti_(3)CNO_(2),revealing free energy for the adsorption of atomic hydrogen closer to 0 than that of Ti_(3)C_(2)O_(2).Both experimental and calculation studies demonstrate the excellent electrocatalytic behavior of titanium carbonitride.The investigation of 2D titanium carbonitride opens up a promising paradigm for the conscious design of high-performance non-precious metal catalyst for hydrogen generation.
基金supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of Chinathe Interdisciplinary Innovation Research Fund for Young Scholars,Lanzhou University
文摘By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12004102 and 11847094)the China Postdoctoral Science Foundation(Grant No.2020M670836)+1 种基金the Open Project of State Key Laboratory of Superhard Materials in Jilin University(Grant No.201703)Student Research Training Program of Henan University of Science and Technology(Grant No.WLSRTP202118)。
文摘Two-dimensional materials have a wide range of applications in many aspects due to their unique properties. Here we carry out a detailed structural search and design of the BP2using the first principles method, and find a new PMM2 sheet.The analysis of the phonon dispersive curves shows that the 2D PMM2 is dynamic stable. The study of molecular dynamics shows that the 2D PMM2 can be stable under high temperature, even at 600 K. Most importantly, when a suitable strain is applied, the structure can exhibit other electronic properties such as direct band gap semiconductor. In addition, the small strain can tune the band gap value of the PMM2 structure to around 1.4 e V, which is very close to the ideal band gap of solar materials. Therefore, the 2D PMM2 may have potential applications in the field of photovoltaic materials.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61104010)
文摘We study the stability analysis and control synthesis of uncertain discrete-time two-dimensional(2D) systems.The mathematical model of the discrete-time 2D system is established upon the well-known Roesser model,and the uncertainty phenomenon,which appears typically in practical environments,is modeled by a convex bounded(polytope type) uncertain domain.The stability analysis and control synthesis of uncertain discrete-time 2D systems are then developed by applying the Lyapunov stability theory.In the processes of stability analysis and control synthesis,the obtained stability/stabilzaition conditions become less conservative by applying some novel relaxed techniques.Moreover,the obtained results are formulated in the form of linear matrix inequalities,which can be easily solved via standard numerical software.Finally,numerical examples are given to demonstrate the effectiveness of the obtained results.
基金Supported by the Science Foundation of Nature(60272042)
文摘In this paper,two operators are defined,and their underlying properties are found,then the R-dual relationship is classified from the aspect of the operators defined.Furthermore,the commutability of the bases of constructing R-dual sequence is discussed.In particular,SR-dual sequence is defined and is clarified.At last an example is given.
文摘From the perspective of the frame theory,with the analysis of animal metaphors in Cantonese nursery rhymes,this paper discusses the feasible translation strategies,suggesting that direct translation can be adopted for animal metaphors that can evoke the similar cognitive frame in both Cantonese and English cultural contexts.As for those without identical frame,translation without the original vehicle can be used for the metaphors of physicalification,while translation with annotation can be applied for the metaphors of personification.
文摘Through the analysis of the status quo of translation teaching in China, the author holds that it is necessary to explore new approaches in this regard. Because college students tend to be affected by the conceptual meaning of the original text, mistranslation may occur frequently in their translation. In translating, one must be armed with linguistic knowledge as well as cognitive knowledge. Accordingly, by applying frame theory to translation teaching, teachers can guide students to construe the original meaning on the lexical, syntactic and textual level, so that they may effectively avoid semantic errors in translation. In view of students' inadequate background knowledge, teachers should guide them to enlarge their knowledge scope and enrich their encyclopedic knowledge.
基金support from the National Natural Science Foundation of China(21673087 and 21873032)startup fund(2006013118 and 3004013105)from Huazhong University of Science and Technologythe Fundamental Research Funds for the Central Universities(2019kfy R CPY116)
文摘Organometallic nanosheets are a versatile platform for design of efficient electrocatalyst materials due to their high surface area and uniform dispersion of metal active sites.In this paper,we systematically investigate the electrocatalytic performance of the first transition metal series TM3–C12S12 monolayers on CO2 using spin-polarized density functional theory.The calculations show that M3–C12S12 exhibits excellent catalytic activity and selectivity in the catalytic reduction in CO2.The main reduction products of Sc,Ti,and Cr are CH4.V,Mn,Fe and Zn mainly produce HCOOH,and Co produces HCHO,while CO is the main product for Ni and Cu.For Sc,Ti,and Cr,the overpotentials are>0.7 V,while for V,Mn,Fe,Co,Ni,Cu,Zn,the overpotentials are very low and range from 0.27 to 0.47 V.Therefore,our results indicate that many of the M3–C12S12 monolayers are expected to be excellent and efficient CO2 reduction catalysts.
基金Project supported by the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594)the Science and Technology Project of Guangdong Province of China (Grant No. 2020B010190001)+1 种基金the National Key R&D Program of China (Grant No. 2018YFA0306200)the National Natural Science Foundation of China (Grant No. 11974119)。
文摘Atoms in the microscopic world are the basic building blocks of the macroscopic world. In this work, we construct an atomic-scale electromagnetic theory that bridges optics in the microscopic and macroscopic worlds. As the building block of the theory, we use the microscopic polarizability to describe the optical response of a single atom, solve the transport of electromagnetic wave through a single atomic layer under arbitrary incident angle and polarization of the light beam, construct the single atomic layer transfer matrix for light transport across the atomic layer. Based on this transfer matrix, we get the analytical form of the dispersion relation, refractive index, and transmission/reflection coefficient of the macroscopic medium. The developed theory can handle single-layer and few-layers of homogeneous and heterogeneous 2D materials, investigate homogeneous 2D materials with various vacancies or insertion atomic-layer defects, study compound 2D materials with a unit cell composed of several elements in both the lateral and parallel directions with respect to the light transport.
文摘As a unique art of language,humor is indispensable to human’s daily life,which reflects human's cognitive wisdom to⁃wards objective things and the society.The appreciation of humor mainly depends on the ability to understand the unconventional use of language.Because humor plays an important role in daily life,psychologists,sociologists and linguists all try to explore its operation mechanism.HAPPY THEATER is a live comedy show by Zhejiang Satellite TV,inviting some movie and TV stars as guest actors,without lines or scripts.It is characterized by the ability to improvise in a high degree of performance and the use of humor in a flexible manner.The framework shifting theory is applied to analyze the humorous language of the program from the per⁃spective of cognitive linguistics in order to reveal the linguistic mechanism behind the humor.