In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm i...In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.展开更多
Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this pap...Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.展开更多
In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.T...In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.The unconditional stability of the LDG scheme is proved,and an a priori error estimate with O(h^(k+1)+At^(2))is derived,where k≥0 denotes the index of the basis function.Extensive numerical results with Q^(k)(k=0,1,2,3)elements are provided to confirm our theoretical results,which also show that the second-order convergence rate in time is not impacted by the changed parameter θ.展开更多
A class of periodic initial value problems for two-dimensional Newton- Boussinesq equations are investigated in this paper. The Newton-Boussinesq equations are turned into the equivalent integral equations. With itera...A class of periodic initial value problems for two-dimensional Newton- Boussinesq equations are investigated in this paper. The Newton-Boussinesq equations are turned into the equivalent integral equations. With iteration methods, the local existence of the solutions is obtained. Using the method of a priori estimates, the global existence of the solution is proved.展开更多
In this paper,we consider the local discontinuous Galerkin method with generalized alter-nating numerical fluxes for two-dimensional nonlinear Schrödinger equations on Carte-sian meshes.The generalized fluxes not...In this paper,we consider the local discontinuous Galerkin method with generalized alter-nating numerical fluxes for two-dimensional nonlinear Schrödinger equations on Carte-sian meshes.The generalized fluxes not only lead to a smaller magnitude of the errors,but can guarantee an energy conservative property that is useful for long time simulations in resolving waves.By virtue of generalized skew-symmetry property of the discontinuous Galerkin spatial operators,two energy equations are established and stability results con-taining energy conservation of the prime variable as well as auxiliary variables are shown.To derive optimal error estimates for nonlinear Schrödinger equations,an additional energy equation is constructed and two a priori error assumptions are used.This,together with properties of some generalized Gauss-Radau projections and a suitable numerical initial condition,implies optimal order of k+1.Numerical experiments are given to demonstrate the theoretical results.展开更多
In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a s...In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.展开更多
In this paper,we develop a two-grid method(TGM)based on the FEM for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations.A two-grid algorithm is proposed for solving the nonlinear sys...In this paper,we develop a two-grid method(TGM)based on the FEM for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations.A two-grid algorithm is proposed for solving the nonlinear system,which consists of two steps:a nonlinear FE system is solved on a coarse grid,then the linearized FE system is solved on the fine grid by Newton iteration based on the coarse solution.The fully discrete numerical approximation is analyzed,where the Galerkin finite element method for the space derivatives and the finite difference scheme for the time Caputo derivative with orderα∈(1,2)andα1∈(0,1).Numerical stability and optimal error estimate O(h^(r+1)+H^(2r+2)+τ^(min{3−α,2−α1}))in L^(2)-norm are presented for two-grid scheme,where t,H and h are the time step size,coarse grid mesh size and fine grid mesh size,respectively.Finally,numerical experiments are provided to confirm our theoretical results and effectiveness of the proposed algorithm.展开更多
Based on the equivalent integro-differential form of the considered problem, a numerical approach to solving the two-dimensional nonlinear time fractional wave equations(NTFWEs) is considered in this paper. To this e...Based on the equivalent integro-differential form of the considered problem, a numerical approach to solving the two-dimensional nonlinear time fractional wave equations(NTFWEs) is considered in this paper. To this end, an alternating direction implicit(ADI) numerical scheme is derived. The scheme is established by combining the secondorder convolution quadrature formula and Crank–Nicolson technique in time and afourth-order difference approach in space. The convergence and unconditional stability of the proposed compact ADI scheme are strictly discussed after a concise solvabilityanalysis. A numerical example is shown to demonstrate the theoretical analysis.展开更多
The aim of this paper is to find the time-dependent term numerically in a two-dimensional heat equation using initial and Neumann boundary conditions and nonlocal integrals as over-determination conditions.This is a v...The aim of this paper is to find the time-dependent term numerically in a two-dimensional heat equation using initial and Neumann boundary conditions and nonlocal integrals as over-determination conditions.This is a very interesting and challenging nonlinear inverse coefficient problem with important applications in various fields ranging from radioactive decay,melting or cooling processes,electronic chips,acoustics and geophysics to medicine.Unique solvability theo-rems of these inverse problems are supplied.However,since the problems are still ill-posed(a small modification in the input data can lead to bigger impact on the ultimate result in the output solution)the solution needs to be regularized.Therefore,in order to obtain a stable solution,a regularized objective function is minimized in order to retrieve the unknown coefficient.The two-dimensional inverse problem is discretized using the forward time central space(FTCS)finite-difference method(FDM),which is conditionally stable and recast as a non-linear least-squares minimization of the Tikhonov regularization function.Numerically,this is effectively solved using the MATLAB subroutine lsqnonlin.Both exact and noisy data are inverted.Numerical results for a few benchmark test examples are presented,discussed and assessed with respect to the FTCS-FDM mesh size discretisation,the level of noise with which the input data is contaminated,and the choice of the regularization parameter is discussed based on the trial and error technique.展开更多
A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoot...A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.展开更多
The inverse problem of reconstructing the time-dependent thermal conductivity and free boundary coefcients along with the temperature in a two-dimensional parabolic equation with initial and boundary conditions and ad...The inverse problem of reconstructing the time-dependent thermal conductivity and free boundary coefcients along with the temperature in a two-dimensional parabolic equation with initial and boundary conditions and additional measurements is,for the rst time,numerically investigated.This inverse problem appears extensively in the modelling of various phenomena in engineering and physics.For instance,steel annealing,vacuum-arc welding,fusion welding,continuous casting,metallurgy,aircraft,oil and gas production during drilling and operation of wells.From literature we already know that this inverse problem has a unique solution.However,the problem is still ill-posed by being unstable to noise in the input data.For the numerical realization,we apply the alternating direction explicit method along with the Tikhonov regularization to nd a stable and accurate numerical solution of nite differences.The root mean square error(rmse)values for various noise levels p for both smooth and non-smooth continuous time-dependent coef-cients Examples are compared.The resulting nonlinear minimization problem is solved numerically using the MATLAB subroutine lsqnonlin.Both exact and numerically simulated noisy input data are inverted.Numerical results presented for two examples show the efciency of the computational method and the accuracy and stability of the numerical solution even in the presence of noise in the input data.展开更多
The numerical algorithms for finding the lines of branching and branching-off solutions of nonlinear problem on mean-square approximation of a real finite nonnegative function with respect to two variables by the modu...The numerical algorithms for finding the lines of branching and branching-off solutions of nonlinear problem on mean-square approximation of a real finite nonnegative function with respect to two variables by the modulus of double discrete Fourier transform dependent on two parameters, are constructed and justified.展开更多
This work investigates the dynamics of modulated waves in a coupled nonlinear LC transmission line. By means of a method based on the semi-discrete limit and in suitably scaled coordinates, we derive the two-dimension...This work investigates the dynamics of modulated waves in a coupled nonlinear LC transmission line. By means of a method based on the semi-discrete limit and in suitably scaled coordinates, we derive the two-dimensional NLS equation governing the propagation of slowly modulated waves in the network. The exact transverse solution is found and the analytical criteria of stability of this solution are derived. The condition for which the network can exhibit modulational instability is also determined. The exactness of this analytical analysis is confirmed by numerical simulations performed on the exact equation of the network.展开更多
文摘In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.
基金Supported by the Natural Science Foundation of China under Grant No.0971226the 973 Project of China under Grant No.2009CB723802+1 种基金the Research Innovation Fund of Hunan Province under Grant No.CX2011B011the Innovation Fund of NUDT under Grant No.B110205
文摘Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.
基金This work is supported by the National Natural Science Foundation of China(11661058,11761053)the Natural Science Foundation of Inner Mongolia(2017MS0107)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-17-A07).
文摘In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.The unconditional stability of the LDG scheme is proved,and an a priori error estimate with O(h^(k+1)+At^(2))is derived,where k≥0 denotes the index of the basis function.Extensive numerical results with Q^(k)(k=0,1,2,3)elements are provided to confirm our theoretical results,which also show that the second-order convergence rate in time is not impacted by the changed parameter θ.
基金Project supported by the National Natural Science Foundation of China (Nos. 10871075 and 10926101)the Natural Science Foundation of Guangdong Province of China(Nos. 9451064201003736 and 9151064201000040)
文摘A class of periodic initial value problems for two-dimensional Newton- Boussinesq equations are investigated in this paper. The Newton-Boussinesq equations are turned into the equivalent integral equations. With iteration methods, the local existence of the solutions is obtained. Using the method of a priori estimates, the global existence of the solution is proved.
基金the National Natural Science Foundation of China Grants U1637208 and 71773024.the National Natural Science Foundation of China Grant 11971132.
文摘In this paper,we consider the local discontinuous Galerkin method with generalized alter-nating numerical fluxes for two-dimensional nonlinear Schrödinger equations on Carte-sian meshes.The generalized fluxes not only lead to a smaller magnitude of the errors,but can guarantee an energy conservative property that is useful for long time simulations in resolving waves.By virtue of generalized skew-symmetry property of the discontinuous Galerkin spatial operators,two energy equations are established and stability results con-taining energy conservation of the prime variable as well as auxiliary variables are shown.To derive optimal error estimates for nonlinear Schrödinger equations,an additional energy equation is constructed and two a priori error assumptions are used.This,together with properties of some generalized Gauss-Radau projections and a suitable numerical initial condition,implies optimal order of k+1.Numerical experiments are given to demonstrate the theoretical results.
文摘In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.
基金This work is supported by the State Key Program of National Natural Science Foundation of China(11931003)National Natural Science Foundation of China(41974133,11971410)+2 种基金Project for Hunan National Applied Mathematics Center of Hunan Provincial Science and Technology Department(2020ZYT003)Hunan Provincial Innovation Foundation for Postgraduate,China(XDCX2020B082,XDCX2021B098)Postgraduate Scientific Research Innovation Project of Hunan Province(CX20210597).
文摘In this paper,we develop a two-grid method(TGM)based on the FEM for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations.A two-grid algorithm is proposed for solving the nonlinear system,which consists of two steps:a nonlinear FE system is solved on a coarse grid,then the linearized FE system is solved on the fine grid by Newton iteration based on the coarse solution.The fully discrete numerical approximation is analyzed,where the Galerkin finite element method for the space derivatives and the finite difference scheme for the time Caputo derivative with orderα∈(1,2)andα1∈(0,1).Numerical stability and optimal error estimate O(h^(r+1)+H^(2r+2)+τ^(min{3−α,2−α1}))in L^(2)-norm are presented for two-grid scheme,where t,H and h are the time step size,coarse grid mesh size and fine grid mesh size,respectively.Finally,numerical experiments are provided to confirm our theoretical results and effectiveness of the proposed algorithm.
基金This survey is supported by the National Natural Science Foundation of China(Grant No.11371029)the Quality Engineering Project of Colleges and Universities in Anhui Province(Grant No.2018kfk136).
文摘Based on the equivalent integro-differential form of the considered problem, a numerical approach to solving the two-dimensional nonlinear time fractional wave equations(NTFWEs) is considered in this paper. To this end, an alternating direction implicit(ADI) numerical scheme is derived. The scheme is established by combining the secondorder convolution quadrature formula and Crank–Nicolson technique in time and afourth-order difference approach in space. The convergence and unconditional stability of the proposed compact ADI scheme are strictly discussed after a concise solvabilityanalysis. A numerical example is shown to demonstrate the theoretical analysis.
文摘The aim of this paper is to find the time-dependent term numerically in a two-dimensional heat equation using initial and Neumann boundary conditions and nonlocal integrals as over-determination conditions.This is a very interesting and challenging nonlinear inverse coefficient problem with important applications in various fields ranging from radioactive decay,melting or cooling processes,electronic chips,acoustics and geophysics to medicine.Unique solvability theo-rems of these inverse problems are supplied.However,since the problems are still ill-posed(a small modification in the input data can lead to bigger impact on the ultimate result in the output solution)the solution needs to be regularized.Therefore,in order to obtain a stable solution,a regularized objective function is minimized in order to retrieve the unknown coefficient.The two-dimensional inverse problem is discretized using the forward time central space(FTCS)finite-difference method(FDM),which is conditionally stable and recast as a non-linear least-squares minimization of the Tikhonov regularization function.Numerically,this is effectively solved using the MATLAB subroutine lsqnonlin.Both exact and noisy data are inverted.Numerical results for a few benchmark test examples are presented,discussed and assessed with respect to the FTCS-FDM mesh size discretisation,the level of noise with which the input data is contaminated,and the choice of the regularization parameter is discussed based on the trial and error technique.
文摘A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.
文摘The inverse problem of reconstructing the time-dependent thermal conductivity and free boundary coefcients along with the temperature in a two-dimensional parabolic equation with initial and boundary conditions and additional measurements is,for the rst time,numerically investigated.This inverse problem appears extensively in the modelling of various phenomena in engineering and physics.For instance,steel annealing,vacuum-arc welding,fusion welding,continuous casting,metallurgy,aircraft,oil and gas production during drilling and operation of wells.From literature we already know that this inverse problem has a unique solution.However,the problem is still ill-posed by being unstable to noise in the input data.For the numerical realization,we apply the alternating direction explicit method along with the Tikhonov regularization to nd a stable and accurate numerical solution of nite differences.The root mean square error(rmse)values for various noise levels p for both smooth and non-smooth continuous time-dependent coef-cients Examples are compared.The resulting nonlinear minimization problem is solved numerically using the MATLAB subroutine lsqnonlin.Both exact and numerically simulated noisy input data are inverted.Numerical results presented for two examples show the efciency of the computational method and the accuracy and stability of the numerical solution even in the presence of noise in the input data.
文摘The numerical algorithms for finding the lines of branching and branching-off solutions of nonlinear problem on mean-square approximation of a real finite nonnegative function with respect to two variables by the modulus of double discrete Fourier transform dependent on two parameters, are constructed and justified.
基金grateful to the Journal of Modern Physics for financial support in publication.
文摘This work investigates the dynamics of modulated waves in a coupled nonlinear LC transmission line. By means of a method based on the semi-discrete limit and in suitably scaled coordinates, we derive the two-dimensional NLS equation governing the propagation of slowly modulated waves in the network. The exact transverse solution is found and the analytical criteria of stability of this solution are derived. The condition for which the network can exhibit modulational instability is also determined. The exactness of this analytical analysis is confirmed by numerical simulations performed on the exact equation of the network.