To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(...To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF.展开更多
Based on heterogeneity extraction,this paper analyzes four potential characteristics of the supervisory board,they are Individual Heterogeneity of the Supervisory Member(Internal Heterogeneity),Organization Size of th...Based on heterogeneity extraction,this paper analyzes four potential characteristics of the supervisory board,they are Individual Heterogeneity of the Supervisory Member(Internal Heterogeneity),Organization Size of the Supervisory Board(Organization Size),Structural Characteristics of the Supervisory Board(Structural Characteristics)and Identity Background of the Supervisory Board(Identity Background);and verifies the impact and action path of the potential characteristics on irregularities.Then,systematically evaluates the micro enterprise organization construction and corporate governance behavior by using the methods of factor analysis and Heckman two-stage model.Empirical research shows that the scale of corporate assets does have an important impact on corporate irregularities and the governance of the board of supervisors.Under the regulation of the company scale,the three potential characteristics:Organization Size,Identity Background and Structural Characteristics have played a significant inhibitory role on irregularities,and the Internal Heterogeneity has no significant effect.When using violation behavior as an alternative variable of supervision performance,the sample selection deviation will be caused by the lack of information disclosure.This paper suggests that we should pay attention to the team of the board of supervisors scientifically and reasonably,weaken the appropriate personalized differences within the board of supervisors,and comprehensively consider the interaction between the company scale,asset quality and the performance of the board of supervisors when formulating the corporate internal management system.展开更多
This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a dis...This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.展开更多
From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling an...From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.展开更多
A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a...A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a dense SrFe_(0.9)Ta_(0.1)O_(3-σ)(SFT)separation layer and a porous Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Cu_(0.1)O_(3-σ)(SFTC)catalytic layer.In thefirst stage reactor,a CO_(2) splitting reaction(CDS:2CO_(2)→2CO+O_(2))occurs at the SFTC catalytic layer.Subsequently,the O_(2) product is selectively extracted through the SFT separation layer to the permeated side for the methane combustion reaction(MCR),which provides an extremely low oxygen partial pressure to enhance the oxygen extraction.In the second stage,a Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Ni_(0.1)O_(3-σ)(SFTN)catalyst is employed to reform the products derived from MCR.The two-stage CMR design results in a remarkable 35.4%CO_(2) conversion for CDS at 900℃.The two-stage CMR was extended to a hollowfiber configuration combining with solar irradiation.The solar-assisted two-stage CMR can operate stably for over 50 h with a high hydrogen yield of 18.1 mL min^(-1) cm^(-2).These results provide a novel strategy for reducing CO_(2) emissions,suggesting potential avenues for the design of the high-performance CMRs and catalysts based on perovskite oxides in the future.展开更多
The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Final...The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Finally, under an algebraic constraint condition, the equivalencebetween the two-stage Kalman estimator and the optimal augmented state Kalman filter is proved.Thereby, the algebraic constraint conditions of optimal two-stage state estimation in the presence ofARMA model random bias are given.展开更多
Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the ...Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.展开更多
The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradatio...The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradation process,cumulative damage model is used for degradation modeling.Assuming that damage increment is Gamma distribution,shock counting subjects to a homogeneous Poisson process(HPP)when degradation process is linear,and shock counting is a non-homogeneous Poisson process(NHPP)when degradation process is nonlinear.A two-stage degradation system is considered in this paper,for which the degradation process is linear in the first stage and the degradation process is nonlinear in the second stage.A nonlinear modeling method for considered system is put forward,and reliability model and remaining useful life model are established.A case study is given to validate the veracities of established models.展开更多
It has been reported that diallyl sulfide (DAS), a sulfur-containing volatile compound in garlic (Allium sativum ), exerts anticarcinogenic activity in various rodent tumor models. In the present study, the antitumor ...It has been reported that diallyl sulfide (DAS), a sulfur-containing volatile compound in garlic (Allium sativum ), exerts anticarcinogenic activity in various rodent tumor models. In the present study, the antitumor property of DAS was tested in Swiss albino mice in the two steqe initiation-promotion mouse skin carcinogenesis. Skin cancers were initiated topically with a single subcarcinOgenic dose (52μg) of 7, 12-dimethyl benz (a) anthracene (DMBA). Promotion was performed by twice weekly applications of 12-O-tetradecanoyl phorbol-13-acetate (TPA) at a dose of 5μg/animal for 32 weeks. DAS was applied topically (250μg/animal) thrice weekly for 3 weeks for anti-initiating and 1 h prior to each promotion treatment for anti-promoting studies. The results showed that the treatment schedule of DAS can effectively delay the onset of tumorigenesis and reduce the cumulative number of tumors and the average number of tumors per mouse. In groups in which DAS applied prior to initiation or promotion, a significant population of the aniinals remained tumor-free till the termination of experiment. These findings suggest that DAS can effectively inhibit chemically induced mouse skincarcinogenesis.展开更多
The possible intermittent impacts of a two-stage isolation system with rigid limiters have been investigated. The isolation system is under periodic external excitation disturbed by small stationary Gaussian white no...The possible intermittent impacts of a two-stage isolation system with rigid limiters have been investigated. The isolation system is under periodic external excitation disturbed by small stationary Gaussian white noise after shock. The maximal impact Poincaré map is proposed based on the multi-body dynamics with unilateral constrains. Then in the period after shock, the zero order approximate stochastic discrete model and the first order approximate stochastic model are developed. The real isolation system of an MTU diesel engine is used to evaluate the established model. After calculating of the numerical example, the effects of noise excitation on the isolation system are discussed. The results show that the property of the system is complicated due to intermittent impact. The difference between zero order model and the first order model may be great. The effect of small noise is obvious. The results may be expected useful to the naval designers.展开更多
In this study, an interval probability-based inexact two-stage stochastic (IP-ITSP) model is developed for environmental pollutants control and greenhouse gas (GHG) emissions reduction management in regional energy sy...In this study, an interval probability-based inexact two-stage stochastic (IP-ITSP) model is developed for environmental pollutants control and greenhouse gas (GHG) emissions reduction management in regional energy system under uncertainties. In the IP-ITSP model, methods of interval probability, interval-parameter programming (IPP) and two-stage stochastic programming (TSP) are introduced into an integer programming framework;the developed model can tackle uncertainties described in terms of interval values and interval probability distributions. The developed model is applied to a case of planning GHG -emission mitigation in a regional electricity system, demonstrating that IP-ITSP is applicable to reflecting complexities of multi-uncertainty, and capable of addressing the problem of GHG-emission reduction. 4 scenarios corresponding to different GHG -emission mitigation levels are examined;the results indicates that the model could help decision makers identify desired GHG mitigation policies under various economic costs and environmental requirements.展开更多
As the non-periodic inspections are common in practice,a two-stage inspection model based on a three-stage failure process is proposed. The two-stage inspection means that the system is inspected with the first inspec...As the non-periodic inspections are common in practice,a two-stage inspection model based on a three-stage failure process is proposed. The two-stage inspection means that the system is inspected with the first inspection interval T_1 and the second inspection interval T_2. Because of the three color schemes commonly used in industry,three stages are divided by the system lifetime:normal, minor defective and severe defective stages. Upon the failure of the system,replacement is carried out. Maintenance is done once identifying the severe defective stage. However,when the minor defective stage is identified by the second inspection interval T_2,action of halving the subsequent inspection interval is adopted.Otherwise,no action is required. Our objective function is to optimize the inspection intervals so as to minimize the expected cost per unit time. Finally,a numerical example is presented to illustrate the effectiveness of the proposed model.展开更多
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein functio...Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.展开更多
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me...To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.展开更多
This paper proposes reliability and maintenance models for systems suffering random shocks arriving according to a non-homogeneous Poisson process.The system degradation process include two stages:from the installatio...This paper proposes reliability and maintenance models for systems suffering random shocks arriving according to a non-homogeneous Poisson process.The system degradation process include two stages:from the installation of a new system to an initial point of a defect(normal stage),and then from that point to failure(defective stage),following the delay time concept.By employing the virtual age method,the impact of external shocks on the system degradation process is characterized by random virtual age increment in the two stages,resulting in the corresponding two-stage virtual age process.When operating in the defective state,the system becomes more susceptible to fatigue and suffers from a greater aging rate.Replacement is carried out either on failure or on the detection of a defective state at periodic or opportunistic inspections.This paper evaluates system reliability performance and investigates the optimal opportunistic maintenance policy.A case study on a cooling system is given to verify the obtained results.展开更多
Early Production Facilities are makeshift process deployment that ensures that marginal oilfield operators make revenues from their new discoveries with little cash outlay and limited investment risks. Authors have in...Early Production Facilities are makeshift process deployment that ensures that marginal oilfield operators make revenues from their new discoveries with little cash outlay and limited investment risks. Authors have in past simulated a gas process facility using Hysys without particularly developing mathematical models for the key equipment. There also has been modeling of phase separation dynamics and process simulation but still without models for equipment. We basically developed models for the critical process equipment for early production, sized the equipment with data from a marginal field in the Niger delta region of Nigeria and then ran a dynamic simulation with the sized equipment. The important elements of the deployment are two-phase process vessel, 3-phase process vessel;knock-out drum, produced water treatment unit. Mathematical models were developed and adapted with Mathlab for the equipment sizing whilst ASPEN PLUS was used for simulating the process. Process data retrieved from a marginal field in Nigeria was used as input to quantify the equipment models. Sized equipment was deployed in Hysys V8.8 for a steady and dynamic state. The system simulation was comprised of a two-phase process vessel followed by a 3-phase process vessel [1]. The unwanted gas was sent to knock out drum for removal of entrained liquid droplets before flaring (this was because the volume of gas processed is deemed uneconomical) and produced water to treatment unit for removing droplets of oil before disposal. Gas, oil and water were fed into the first stage separator (2-phase) at 132918.34 Ibmole/hr, 7622.95 Ibmole/hr and 1082.74 Ibmole/hr respectively. The operating pressures of the first and second vessels were at 850 psi and 150 psi respectively. The 2-phase vessel flashed off 96.7% of the gas and increased the liquid recovery by 3.3%. At the end of the second stage separation, oil yield increased by 270 Ibmole/hr, the gas increased by 110.15 Ibmole/hr whilst water reduced by 379 Ibmole/hr. This result confirmed that the vessels were sized to optimize recovery of hydrocarbons entrained in the various phases into the most required oil phase.展开更多
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the f...NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.展开更多
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事...安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。展开更多
基金The National Natural Science Foundation of China(No.61273236)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1637),China Scholarship Council
文摘To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF.
文摘Based on heterogeneity extraction,this paper analyzes four potential characteristics of the supervisory board,they are Individual Heterogeneity of the Supervisory Member(Internal Heterogeneity),Organization Size of the Supervisory Board(Organization Size),Structural Characteristics of the Supervisory Board(Structural Characteristics)and Identity Background of the Supervisory Board(Identity Background);and verifies the impact and action path of the potential characteristics on irregularities.Then,systematically evaluates the micro enterprise organization construction and corporate governance behavior by using the methods of factor analysis and Heckman two-stage model.Empirical research shows that the scale of corporate assets does have an important impact on corporate irregularities and the governance of the board of supervisors.Under the regulation of the company scale,the three potential characteristics:Organization Size,Identity Background and Structural Characteristics have played a significant inhibitory role on irregularities,and the Internal Heterogeneity has no significant effect.When using violation behavior as an alternative variable of supervision performance,the sample selection deviation will be caused by the lack of information disclosure.This paper suggests that we should pay attention to the team of the board of supervisors scientifically and reasonably,weaken the appropriate personalized differences within the board of supervisors,and comprehensively consider the interaction between the company scale,asset quality and the performance of the board of supervisors when formulating the corporate internal management system.
基金supported by the National Basic Research Program of China(2010CB951002)the Dr.Western-funded Project of Chinese Academy of Science(XBBS201010 and XBBS201005)+1 种基金the National Natural Sciences Foundation of China (51190095)the Open Research Fund Program of State Key Laboratory of Hydro-science and Engineering(sklhse-2012-A03)
文摘This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.
基金supported in part by the National Natural Science Foundation of China(51977127)Shanghai Municipal Science and Technology Commission(19020500800)“Shuguang Program”(20SG52)Shanghai Education Development Foundation and Shanghai Municipal Education Commission.
文摘From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.
基金supported by the National Key Research and Development Program of China(2022YFE0101600)the National Natural Science Foundation of China(U23A20117)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20220002,BE2022024)the Leading Talents Program of Zhejiang Province(2024C03223)Topnotch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP).
文摘A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a dense SrFe_(0.9)Ta_(0.1)O_(3-σ)(SFT)separation layer and a porous Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Cu_(0.1)O_(3-σ)(SFTC)catalytic layer.In thefirst stage reactor,a CO_(2) splitting reaction(CDS:2CO_(2)→2CO+O_(2))occurs at the SFTC catalytic layer.Subsequently,the O_(2) product is selectively extracted through the SFT separation layer to the permeated side for the methane combustion reaction(MCR),which provides an extremely low oxygen partial pressure to enhance the oxygen extraction.In the second stage,a Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Ni_(0.1)O_(3-σ)(SFTN)catalyst is employed to reform the products derived from MCR.The two-stage CMR design results in a remarkable 35.4%CO_(2) conversion for CDS at 900℃.The two-stage CMR was extended to a hollowfiber configuration combining with solar irradiation.The solar-assisted two-stage CMR can operate stably for over 50 h with a high hydrogen yield of 18.1 mL min^(-1) cm^(-2).These results provide a novel strategy for reducing CO_(2) emissions,suggesting potential avenues for the design of the high-performance CMRs and catalysts based on perovskite oxides in the future.
文摘The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Finally, under an algebraic constraint condition, the equivalencebetween the two-stage Kalman estimator and the optimal augmented state Kalman filter is proved.Thereby, the algebraic constraint conditions of optimal two-stage state estimation in the presence ofARMA model random bias are given.
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.
基金National Outstanding Youth Science Fund Project,China(No.71401173)
文摘The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradation process,cumulative damage model is used for degradation modeling.Assuming that damage increment is Gamma distribution,shock counting subjects to a homogeneous Poisson process(HPP)when degradation process is linear,and shock counting is a non-homogeneous Poisson process(NHPP)when degradation process is nonlinear.A two-stage degradation system is considered in this paper,for which the degradation process is linear in the first stage and the degradation process is nonlinear in the second stage.A nonlinear modeling method for considered system is put forward,and reliability model and remaining useful life model are established.A case study is given to validate the veracities of established models.
文摘It has been reported that diallyl sulfide (DAS), a sulfur-containing volatile compound in garlic (Allium sativum ), exerts anticarcinogenic activity in various rodent tumor models. In the present study, the antitumor property of DAS was tested in Swiss albino mice in the two steqe initiation-promotion mouse skin carcinogenesis. Skin cancers were initiated topically with a single subcarcinOgenic dose (52μg) of 7, 12-dimethyl benz (a) anthracene (DMBA). Promotion was performed by twice weekly applications of 12-O-tetradecanoyl phorbol-13-acetate (TPA) at a dose of 5μg/animal for 32 weeks. DAS was applied topically (250μg/animal) thrice weekly for 3 weeks for anti-initiating and 1 h prior to each promotion treatment for anti-promoting studies. The results showed that the treatment schedule of DAS can effectively delay the onset of tumorigenesis and reduce the cumulative number of tumors and the average number of tumors per mouse. In groups in which DAS applied prior to initiation or promotion, a significant population of the aniinals remained tumor-free till the termination of experiment. These findings suggest that DAS can effectively inhibit chemically induced mouse skincarcinogenesis.
基金Project supported by the National Natural Science Foundation of China (No. 10072040)
文摘The possible intermittent impacts of a two-stage isolation system with rigid limiters have been investigated. The isolation system is under periodic external excitation disturbed by small stationary Gaussian white noise after shock. The maximal impact Poincaré map is proposed based on the multi-body dynamics with unilateral constrains. Then in the period after shock, the zero order approximate stochastic discrete model and the first order approximate stochastic model are developed. The real isolation system of an MTU diesel engine is used to evaluate the established model. After calculating of the numerical example, the effects of noise excitation on the isolation system are discussed. The results show that the property of the system is complicated due to intermittent impact. The difference between zero order model and the first order model may be great. The effect of small noise is obvious. The results may be expected useful to the naval designers.
文摘In this study, an interval probability-based inexact two-stage stochastic (IP-ITSP) model is developed for environmental pollutants control and greenhouse gas (GHG) emissions reduction management in regional energy system under uncertainties. In the IP-ITSP model, methods of interval probability, interval-parameter programming (IPP) and two-stage stochastic programming (TSP) are introduced into an integer programming framework;the developed model can tackle uncertainties described in terms of interval values and interval probability distributions. The developed model is applied to a case of planning GHG -emission mitigation in a regional electricity system, demonstrating that IP-ITSP is applicable to reflecting complexities of multi-uncertainty, and capable of addressing the problem of GHG-emission reduction. 4 scenarios corresponding to different GHG -emission mitigation levels are examined;the results indicates that the model could help decision makers identify desired GHG mitigation policies under various economic costs and environmental requirements.
文摘As the non-periodic inspections are common in practice,a two-stage inspection model based on a three-stage failure process is proposed. The two-stage inspection means that the system is inspected with the first inspection interval T_1 and the second inspection interval T_2. Because of the three color schemes commonly used in industry,three stages are divided by the system lifetime:normal, minor defective and severe defective stages. Upon the failure of the system,replacement is carried out. Maintenance is done once identifying the severe defective stage. However,when the minor defective stage is identified by the second inspection interval T_2,action of halving the subsequent inspection interval is adopted.Otherwise,no action is required. Our objective function is to optimize the inspection intervals so as to minimize the expected cost per unit time. Finally,a numerical example is presented to illustrate the effectiveness of the proposed model.
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.
基金supported by Warren Alpert Foundation and Houston Methodist Academic Institute Laboratory Operating Fund(to HLC).
文摘Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.
基金supported by University of Macao,China,Nos.MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF(to ZY)the Macao Science and Technology Development Fund,China,Nos.FDCT0048/2021/AGJ and FDCT0020/2019/AMJ and FDCT 0011/2018/A1(to ZY)Natural Science Foundation of Guangdong Province of China,No.EF017/FHS-YZ/2021/GDSTC(to ZY)。
文摘To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.
基金supported by the National Natural Science Foundation of China(72001026).
文摘This paper proposes reliability and maintenance models for systems suffering random shocks arriving according to a non-homogeneous Poisson process.The system degradation process include two stages:from the installation of a new system to an initial point of a defect(normal stage),and then from that point to failure(defective stage),following the delay time concept.By employing the virtual age method,the impact of external shocks on the system degradation process is characterized by random virtual age increment in the two stages,resulting in the corresponding two-stage virtual age process.When operating in the defective state,the system becomes more susceptible to fatigue and suffers from a greater aging rate.Replacement is carried out either on failure or on the detection of a defective state at periodic or opportunistic inspections.This paper evaluates system reliability performance and investigates the optimal opportunistic maintenance policy.A case study on a cooling system is given to verify the obtained results.
文摘Early Production Facilities are makeshift process deployment that ensures that marginal oilfield operators make revenues from their new discoveries with little cash outlay and limited investment risks. Authors have in past simulated a gas process facility using Hysys without particularly developing mathematical models for the key equipment. There also has been modeling of phase separation dynamics and process simulation but still without models for equipment. We basically developed models for the critical process equipment for early production, sized the equipment with data from a marginal field in the Niger delta region of Nigeria and then ran a dynamic simulation with the sized equipment. The important elements of the deployment are two-phase process vessel, 3-phase process vessel;knock-out drum, produced water treatment unit. Mathematical models were developed and adapted with Mathlab for the equipment sizing whilst ASPEN PLUS was used for simulating the process. Process data retrieved from a marginal field in Nigeria was used as input to quantify the equipment models. Sized equipment was deployed in Hysys V8.8 for a steady and dynamic state. The system simulation was comprised of a two-phase process vessel followed by a 3-phase process vessel [1]. The unwanted gas was sent to knock out drum for removal of entrained liquid droplets before flaring (this was because the volume of gas processed is deemed uneconomical) and produced water to treatment unit for removing droplets of oil before disposal. Gas, oil and water were fed into the first stage separator (2-phase) at 132918.34 Ibmole/hr, 7622.95 Ibmole/hr and 1082.74 Ibmole/hr respectively. The operating pressures of the first and second vessels were at 850 psi and 150 psi respectively. The 2-phase vessel flashed off 96.7% of the gas and increased the liquid recovery by 3.3%. At the end of the second stage separation, oil yield increased by 270 Ibmole/hr, the gas increased by 110.15 Ibmole/hr whilst water reduced by 379 Ibmole/hr. This result confirmed that the vessels were sized to optimize recovery of hydrocarbons entrained in the various phases into the most required oil phase.
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
基金ACKNOWLEDGM ENTS This work was supported by the National Natural Science Foundation of China (No.51006110, No.51276183, and No.51036006), the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331), and National Key Basic Research Program 973 Project Founded by MOST of China (No.2013CB228105).
文摘NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.
文摘安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。