Our Solar System contains eight planets and their respective natural satellites excepting the inner two planets Mercury and Venus. A satellite hosted by a given Planet is well protected by the gravitational pertubatio...Our Solar System contains eight planets and their respective natural satellites excepting the inner two planets Mercury and Venus. A satellite hosted by a given Planet is well protected by the gravitational pertubation of much heavier planets such as Jupiter and Saturn if the natural satellite lies deep inside the respective host Planet Hill sphere. Each planet has a Hill radius a<sub>H</sub> and planet mean radius R<sub>P </sub>and the ratio R<sub>1</sub>=R<sub>P</sub>/a<sub>H</sub>. Under very low R<sub>1 </sub>(less than 0.006) the approximation of CRTBP (centrally restricted three-body problem) to two-body problem is valid and planet has spacious Hill lobe to capture a satellite and retain it. This ensures a high probability of capture of natural satellite by the given planet and Sun’s perturbation on Planet-Satellite binary can be neglected. This is the case with Earth, Mars, Jupiter, Saturn, Neptune and Uranus. But Mercury and Venus has R<sub>1</sub>=R<sub>P</sub>/a<sub>H</sub> =0.01 and 5.9862 × 10<sup>-3</sup> respectively hence they have no satellites. There is a limit to the dimension of the captured body. It must be a much smaller body both dimensionally as well masswise. The qantitative limit is a subject of an independent study.展开更多
以双馈风力发电系统(doubly-fed induction generator based wind energy conversion system,DFIG-based WECS)为例,利用小信号分析法推导出由风机、双质量块传动链构成的动力与传动系统通用传递函数方程。动力与传动系统传递函数的零...以双馈风力发电系统(doubly-fed induction generator based wind energy conversion system,DFIG-based WECS)为例,利用小信号分析法推导出由风机、双质量块传动链构成的动力与传动系统通用传递函数方程。动力与传动系统传递函数的零极点位置、稳定性与系统参数及系统运行工作点相关。该传递函数可进一步分解为扭转分量和非扭转分量。传动链参数仅对扭转分量造成影响。在此基础上,建立了考虑动力传动、电机、变流器、控制等环节的风力发电系统传递函数模型。模型综合了各环节参数,可直观反映系统参数对系统响应的影响,有助于深入了解系统动态行为。算例及时域仿真结果证明了所提出传递函数模型的准确性和高效性,可为系统参数设计研究提供理论依据。展开更多
The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and t...The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists.展开更多
PTO(power take-off)系统是波浪能发电装置(wave energy converter,WEC)的重要组成部分。本文针对摇臂式波浪能发电装置,提出一种机械式PTO系统,考虑发电机负载与机械传动的影响,开展摇臂浮子水动力性能与PTO系统的联合仿真研究。分析...PTO(power take-off)系统是波浪能发电装置(wave energy converter,WEC)的重要组成部分。本文针对摇臂式波浪能发电装置,提出一种机械式PTO系统,考虑发电机负载与机械传动的影响,开展摇臂浮子水动力性能与PTO系统的联合仿真研究。分析摇臂浮子在不同行程工作模式下的运动响应,并对联合仿真模型的PTO系统参数进行优化。研究发现:在目标海况下,本项目设计的发电装置,双行程工作的WEC系统功率显著高于单行程工作状态,双行程WEC最佳功率对应的传动比约为72.5;单行程工作的摇臂浮子在低传动比(小于60)下的上升、下降功率近乎相等,随着传动比的增加,上升、下降行程的功率相较于双行程模式都分别递增,且下降行程功率大于上升行程功率。本文采用的联合仿真方法可为不同海况与各类振荡浮子式波能发电装置的设计与选型提供参考。展开更多
Based on the unified Hauser–Feshbach and exciton model,which can describe the particle emission processes between discrete energy levels with energy,angular momentum,and parity conservations,a statistical theory of l...Based on the unified Hauser–Feshbach and exciton model,which can describe the particle emission processes between discrete energy levels with energy,angular momentum,and parity conservations,a statistical theory of light nucleus reaction(STLN)is developed to calculate the double-differential cross-sections of the outgoing neutron and light charged particles for the proton-induced^(6) Li reaction.A significant difference is observed between the p+^(6) Li and p+^(7) Li reactions owing to the discrepancies in the energy-level structures of the targets.The reaction channels,including sequential and simultaneous emission processes,are analyzed in detail.Taking the double-differential cross-sections of the outgoing proton as an example,the influence of contaminations(such as^(1) H,^(7)Li,^(12)C,and^(16)O)on the target is identified in terms of the kinetic energy of the first emitted particles.The optical potential parameters of the proton are obtained by fitting the elastic scattering differential cross-sections.The calculated total double-differential cross-sections of the outgoing proton and deuteron at E_(p)=14 MeV agree well with the experimental data for different outgoing angles.Simultaneously,the mixed double differential cross-sections of^(3) He andαare in good agreement with the measurements.The agreement between the measured data and calculated results indicates that the two-body and three-body breakup reactions need to be considered,and the pre-equilibrium reaction mechanism dominates the reaction processes.Based on the STLN model,a PLUNF code for the p+^(6) Li reaction is developed to obtain an ENDF-6-formatted file of the double-differential cross-sections of the nucleon and light composite charged particles.展开更多
The basis functions of the translation invariant shell model are used to construct the ground state nuclear wave functions of <sup>3</sup>H. The used residual two-body interactions consist of central, tens...The basis functions of the translation invariant shell model are used to construct the ground state nuclear wave functions of <sup>3</sup>H. The used residual two-body interactions consist of central, tensor, spin orbit and quadratic spin orbit terms with Gaussian radial dependence. The parameters of these interactions are so chosen in such a way that they represent the long-range attraction and the short-range repulsion of the nucleon-nucleon interactions. These parameters are so chosen to reproduce good agreement between the calculated values of the binding energy, the root mean-square radius, the D-state probability, the magnetic dipole moment and the electric quadrupole moment of the deuteron nucleus. The variation method is then used to calculate the binding energy of triton by varying the oscillator parameter which exists in the nuclear wave function. The obtained nuclear wave functions are then used to calculate the root mean-square radius and the magnetic dipole moment of the triton.展开更多
This work investigated the influence of two types of mooring systems on the hydrodynamic performance of a two-body floating wave energy converter(WEC). It also investigated the effects of the physical parameters of th...This work investigated the influence of two types of mooring systems on the hydrodynamic performance of a two-body floating wave energy converter(WEC). It also investigated the effects of the physical parameters of the mooring system on the amount of extractable power from incident waves in the frequency domain. The modeled converter comprised a floating body(a buoy), a submerged body with two mooring systems, and a coupling system for two bodies. The coupling system was a simplified power take-off system that was modeled by a linear spring-damper model. The tension leg mooring system could drastically affect the heave motion of the submerged body of the model and increase relative displacement between the two bodies. The effects of the stiffness parameter of the mooring system on power absorption exceeded those of the pretension tendon force.展开更多
The microstructure,mechanical properties,and the effects of sliding distance and material removal mechanism on two-body abrasive wear behaviour of hypereutectic Al-Si-Si C composite and its matrix alloy were investiga...The microstructure,mechanical properties,and the effects of sliding distance and material removal mechanism on two-body abrasive wear behaviour of hypereutectic Al-Si-Si C composite and its matrix alloy were investigated.The hypereutectic Al-Si-Si C composite was prepared by stir casting route.The hardness,ultimate tensile strength and yield strength of the composite are increased by 17%,38%,and 30%respectively compared with those of the matrix alloy,while the elongation of the composite is decreased by 48%compared with that of the matrix alloy.The wear rate of the materials is increased with increasing the abrasive size and the applied load and does not vary with the sliding distance.The wear surfaces and wear debris of the materials were characterized by high-resolution field emission scanning electron microscopy(HR FESEM)and wear mechanism was analyzed for low and high load regimes.展开更多
In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber...In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter's efficiency when considering specific conditions.展开更多
The mathematic calculation on two--body wear of austenitic manganese steel has been performed by means of the elastic contact theory,stress interferometer and SEM.Stress distribution in contacted area was calculated a...The mathematic calculation on two--body wear of austenitic manganese steel has been performed by means of the elastic contact theory,stress interferometer and SEM.Stress distribution in contacted area was calculated and the mechanism on two--body wear has been investigated through numerical quadrature.Results show that two--body wear is mainly plowing wear the cracks of abrasive dust originates from the region between 0.2αand 0.5α(αis radius of contacted round).Driving force to make crack extension along y axis is T_(yzmax)and extension direction is 45°with horizon.Driving forces to make crack extension along x axis is alternativeσ_x and T_(yzmax),the direction of crack extension is 37°with horizon.展开更多
The current approach of a system of two bodies that interact through a gravitational force goes beyond the familiar expositions [1-3] and derives some interesting features and laws that are overlooked. A new expressio...The current approach of a system of two bodies that interact through a gravitational force goes beyond the familiar expositions [1-3] and derives some interesting features and laws that are overlooked. A new expression for the angular momentum of a system in terms of the angular momenta of its parts is deduced. It is shown that the characteristics of the relative motion depend on the system’s total mass, whereas the characteristics of the individual motions depend on the masses of the two bodies. The reduced energy and angular momentum densities are constants of motion that do not depend on the distribution of the total mass between the two bodies;whereas the energy may vary in absolute value from an infinitesimal to a maximum value which occurs when the two bodies are of equal masses. In correspondence with infinite possible ways to describe the absolute rotational positioning of a two body system, an infinite set of Laplace-Runge-Lenz vectors (LRL) are constructed, all fixing a unique orientation of the orbit relative to the fixed stars. The common expression of LRV vector is an approximation of the actual one. The conditions for nested and intersecting individual orbits of the two bodies are specified. As far as we know, and apart from the law of periods, the laws of equivalent orbits concerning their associated periods, areal velocities, angular velocities, velocities, energies, as well as, the law of total angular momentum, were never considered before.展开更多
It is well-known that philosophical conflicts exist among classical mechanics,quantum mechanics and relativistic mechanics.In order to use the framework of general system theory to unify these three mechanics subjects...It is well-known that philosophical conflicts exist among classical mechanics,quantum mechanics and relativistic mechanics.In order to use the framework of general system theory to unify these three mechanics subjects,a new general system theory is developed based on a new ontology of ether and minds as the fundamental existences in the world.The two-body problem is the simplest model in mechanics and in this paper,it is re-examined by using our new general system theory.It is found that the current description of the classical full two-body problem is inappropriate since the observer and the measurement apparatus have not been explicitly considered.After considering these,it is actually a three-body problem while only the special case of the Kepler problem is the two-body problem.By introducing the concepts of psychic force and psychic field,all the possible movement states in the two-body problem can be explained within the framework of classical mechanics.There is no need to change the meanings of many fundamental concepts,such as time,space,matter,mass,and energy as done in quantum mechanics and relativity theory.This points out a new direction for the unification of different theories.展开更多
文摘Our Solar System contains eight planets and their respective natural satellites excepting the inner two planets Mercury and Venus. A satellite hosted by a given Planet is well protected by the gravitational pertubation of much heavier planets such as Jupiter and Saturn if the natural satellite lies deep inside the respective host Planet Hill sphere. Each planet has a Hill radius a<sub>H</sub> and planet mean radius R<sub>P </sub>and the ratio R<sub>1</sub>=R<sub>P</sub>/a<sub>H</sub>. Under very low R<sub>1 </sub>(less than 0.006) the approximation of CRTBP (centrally restricted three-body problem) to two-body problem is valid and planet has spacious Hill lobe to capture a satellite and retain it. This ensures a high probability of capture of natural satellite by the given planet and Sun’s perturbation on Planet-Satellite binary can be neglected. This is the case with Earth, Mars, Jupiter, Saturn, Neptune and Uranus. But Mercury and Venus has R<sub>1</sub>=R<sub>P</sub>/a<sub>H</sub> =0.01 and 5.9862 × 10<sup>-3</sup> respectively hence they have no satellites. There is a limit to the dimension of the captured body. It must be a much smaller body both dimensionally as well masswise. The qantitative limit is a subject of an independent study.
文摘以双馈风力发电系统(doubly-fed induction generator based wind energy conversion system,DFIG-based WECS)为例,利用小信号分析法推导出由风机、双质量块传动链构成的动力与传动系统通用传递函数方程。动力与传动系统传递函数的零极点位置、稳定性与系统参数及系统运行工作点相关。该传递函数可进一步分解为扭转分量和非扭转分量。传动链参数仅对扭转分量造成影响。在此基础上,建立了考虑动力传动、电机、变流器、控制等环节的风力发电系统传递函数模型。模型综合了各环节参数,可直观反映系统参数对系统响应的影响,有助于深入了解系统动态行为。算例及时域仿真结果证明了所提出传递函数模型的准确性和高效性,可为系统参数设计研究提供理论依据。
基金supported by the National Natural Science Foundation of China Youth Fund(12105234)。
文摘The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists.
文摘PTO(power take-off)系统是波浪能发电装置(wave energy converter,WEC)的重要组成部分。本文针对摇臂式波浪能发电装置,提出一种机械式PTO系统,考虑发电机负载与机械传动的影响,开展摇臂浮子水动力性能与PTO系统的联合仿真研究。分析摇臂浮子在不同行程工作模式下的运动响应,并对联合仿真模型的PTO系统参数进行优化。研究发现:在目标海况下,本项目设计的发电装置,双行程工作的WEC系统功率显著高于单行程工作状态,双行程WEC最佳功率对应的传动比约为72.5;单行程工作的摇臂浮子在低传动比(小于60)下的上升、下降功率近乎相等,随着传动比的增加,上升、下降行程的功率相较于双行程模式都分别递增,且下降行程功率大于上升行程功率。本文采用的联合仿真方法可为不同海况与各类振荡浮子式波能发电装置的设计与选型提供参考。
基金supported by the National Natural Science Foundation of China(No.12065003)the Guangxi Key R&D Project(2023AB07029)+1 种基金the Scientific Research and Technology Development Project of Guilin(20210104-2)the Central Government Guides Local Scientific and Technological Development Funds of China(Guike ZY22096024)。
文摘Based on the unified Hauser–Feshbach and exciton model,which can describe the particle emission processes between discrete energy levels with energy,angular momentum,and parity conservations,a statistical theory of light nucleus reaction(STLN)is developed to calculate the double-differential cross-sections of the outgoing neutron and light charged particles for the proton-induced^(6) Li reaction.A significant difference is observed between the p+^(6) Li and p+^(7) Li reactions owing to the discrepancies in the energy-level structures of the targets.The reaction channels,including sequential and simultaneous emission processes,are analyzed in detail.Taking the double-differential cross-sections of the outgoing proton as an example,the influence of contaminations(such as^(1) H,^(7)Li,^(12)C,and^(16)O)on the target is identified in terms of the kinetic energy of the first emitted particles.The optical potential parameters of the proton are obtained by fitting the elastic scattering differential cross-sections.The calculated total double-differential cross-sections of the outgoing proton and deuteron at E_(p)=14 MeV agree well with the experimental data for different outgoing angles.Simultaneously,the mixed double differential cross-sections of^(3) He andαare in good agreement with the measurements.The agreement between the measured data and calculated results indicates that the two-body and three-body breakup reactions need to be considered,and the pre-equilibrium reaction mechanism dominates the reaction processes.Based on the STLN model,a PLUNF code for the p+^(6) Li reaction is developed to obtain an ENDF-6-formatted file of the double-differential cross-sections of the nucleon and light composite charged particles.
文摘The basis functions of the translation invariant shell model are used to construct the ground state nuclear wave functions of <sup>3</sup>H. The used residual two-body interactions consist of central, tensor, spin orbit and quadratic spin orbit terms with Gaussian radial dependence. The parameters of these interactions are so chosen in such a way that they represent the long-range attraction and the short-range repulsion of the nucleon-nucleon interactions. These parameters are so chosen to reproduce good agreement between the calculated values of the binding energy, the root mean-square radius, the D-state probability, the magnetic dipole moment and the electric quadrupole moment of the deuteron nucleus. The variation method is then used to calculate the binding energy of triton by varying the oscillator parameter which exists in the nuclear wave function. The obtained nuclear wave functions are then used to calculate the root mean-square radius and the magnetic dipole moment of the triton.
文摘This work investigated the influence of two types of mooring systems on the hydrodynamic performance of a two-body floating wave energy converter(WEC). It also investigated the effects of the physical parameters of the mooring system on the amount of extractable power from incident waves in the frequency domain. The modeled converter comprised a floating body(a buoy), a submerged body with two mooring systems, and a coupling system for two bodies. The coupling system was a simplified power take-off system that was modeled by a linear spring-damper model. The tension leg mooring system could drastically affect the heave motion of the submerged body of the model and increase relative displacement between the two bodies. The effects of the stiffness parameter of the mooring system on power absorption exceeded those of the pretension tendon force.
基金the financial support received to the first author as a scholarship from MHRD,Government of India.
文摘The microstructure,mechanical properties,and the effects of sliding distance and material removal mechanism on two-body abrasive wear behaviour of hypereutectic Al-Si-Si C composite and its matrix alloy were investigated.The hypereutectic Al-Si-Si C composite was prepared by stir casting route.The hardness,ultimate tensile strength and yield strength of the composite are increased by 17%,38%,and 30%respectively compared with those of the matrix alloy,while the elongation of the composite is decreased by 48%compared with that of the matrix alloy.The wear rate of the materials is increased with increasing the abrasive size and the applied load and does not vary with the sliding distance.The wear surfaces and wear debris of the materials were characterized by high-resolution field emission scanning electron microscopy(HR FESEM)and wear mechanism was analyzed for low and high load regimes.
文摘In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter's efficiency when considering specific conditions.
文摘The mathematic calculation on two--body wear of austenitic manganese steel has been performed by means of the elastic contact theory,stress interferometer and SEM.Stress distribution in contacted area was calculated and the mechanism on two--body wear has been investigated through numerical quadrature.Results show that two--body wear is mainly plowing wear the cracks of abrasive dust originates from the region between 0.2αand 0.5α(αis radius of contacted round).Driving force to make crack extension along y axis is T_(yzmax)and extension direction is 45°with horizon.Driving forces to make crack extension along x axis is alternativeσ_x and T_(yzmax),the direction of crack extension is 37°with horizon.
文摘The current approach of a system of two bodies that interact through a gravitational force goes beyond the familiar expositions [1-3] and derives some interesting features and laws that are overlooked. A new expression for the angular momentum of a system in terms of the angular momenta of its parts is deduced. It is shown that the characteristics of the relative motion depend on the system’s total mass, whereas the characteristics of the individual motions depend on the masses of the two bodies. The reduced energy and angular momentum densities are constants of motion that do not depend on the distribution of the total mass between the two bodies;whereas the energy may vary in absolute value from an infinitesimal to a maximum value which occurs when the two bodies are of equal masses. In correspondence with infinite possible ways to describe the absolute rotational positioning of a two body system, an infinite set of Laplace-Runge-Lenz vectors (LRL) are constructed, all fixing a unique orientation of the orbit relative to the fixed stars. The common expression of LRV vector is an approximation of the actual one. The conditions for nested and intersecting individual orbits of the two bodies are specified. As far as we know, and apart from the law of periods, the laws of equivalent orbits concerning their associated periods, areal velocities, angular velocities, velocities, energies, as well as, the law of total angular momentum, were never considered before.
基金supported by the“Construction of a Leading Innovation Team”project by the Hangzhou Municipal government,and the startup funding of New-Joined PI of Westlake University with grant number(041030150118).
文摘It is well-known that philosophical conflicts exist among classical mechanics,quantum mechanics and relativistic mechanics.In order to use the framework of general system theory to unify these three mechanics subjects,a new general system theory is developed based on a new ontology of ether and minds as the fundamental existences in the world.The two-body problem is the simplest model in mechanics and in this paper,it is re-examined by using our new general system theory.It is found that the current description of the classical full two-body problem is inappropriate since the observer and the measurement apparatus have not been explicitly considered.After considering these,it is actually a three-body problem while only the special case of the Kepler problem is the two-body problem.By introducing the concepts of psychic force and psychic field,all the possible movement states in the two-body problem can be explained within the framework of classical mechanics.There is no need to change the meanings of many fundamental concepts,such as time,space,matter,mass,and energy as done in quantum mechanics and relativity theory.This points out a new direction for the unification of different theories.