This paper proposes a two-parameter block triangular splitting(TPTS)preconditioner for the general block two-by-two linear systems.The eigenvalues of the corresponding preconditioned matrix are proved to cluster aroun...This paper proposes a two-parameter block triangular splitting(TPTS)preconditioner for the general block two-by-two linear systems.The eigenvalues of the corresponding preconditioned matrix are proved to cluster around 0 or 1 under mild conditions.The limited numerical results show that the TPTS preconditioner is more efficient than the classic block-diagonal and block-triangular preconditioners when applied to the flexible generalized minimal residual(FGMRES)method.展开更多
For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such a...For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to high-quality preconditioning matrices for some typical matrices from the real-world applications.展开更多
In this paper we examine 5 indexes (the two Yule’s indexes, the chi square, the odds ratio and an elementary index) of a two-by-two table, which estimate the correlation coefficient ρ in a bivariate Bernoulli distri...In this paper we examine 5 indexes (the two Yule’s indexes, the chi square, the odds ratio and an elementary index) of a two-by-two table, which estimate the correlation coefficient ρ in a bivariate Bernoulli distribution. We will find the compact expression of the influence functions, which allow the quantification of the effect of an infinitesimal contamination of the probability of any pair of attributes of the bivariate random variable distributed according to the above-mentioned model. We prove that the only unbiased index is the chi square. In order to determine the indexes, which are less sensitive to contamination, we obtain the expressions of three synthetic measures of the influence function, which are the maximum contamination (gross sensitivity error), the mean square deviation and the variance. These results, even if don’t allow a definitive assessment of the overall optimum properties of the five indexes, as not all of them are unbiased, nevertheless they allow to appreciating the synthetic entity of the effect of the contaminations in the estimation of the parameter ρ of the bivariate Bernoulli distribution.展开更多
The restrictively preconditioned conjugate gradient (RPCG) method is further developed to solve large sparse system of linear equations of a block two-by-two structure. The basic idea of this new approach is that we...The restrictively preconditioned conjugate gradient (RPCG) method is further developed to solve large sparse system of linear equations of a block two-by-two structure. The basic idea of this new approach is that we apply the RPCG method to the normal-residual equation of the block two-by-two linear system and construct each required approximate matrix by making use of the incomplete orthogonal factorization of the involved matrix blocks. Numerical experiments show that the new method, called the restrictively preconditioned conjugate gradient on normal residual (RPCGNR), is more robust and effective than either the known RPCG method or the standard conjugate gradient on normal residual (CGNR) method when being used for solving the large sparse saddle point problems.展开更多
A split Hopkinson pressure bar(SHPB)device in two-by-two form,including the bar bundle form and the single cylindrical bar form,was designed in response to the demand for the dynamic mechanical experiments for brittle...A split Hopkinson pressure bar(SHPB)device in two-by-two form,including the bar bundle form and the single cylindrical bar form,was designed in response to the demand for the dynamic mechanical experiments for brittle materials such as concrete,rock,etc.The stress waveforms generated through a projectile impacting two different types of incident bars have been studied based on the one-dimensional stress wave theory and numerical simulation method.At last,based on the established two types of mesoscale concrete models with random convex polyhedral aggregates,we performed comparison analysis of SHPB numerical simulations for concrete materials with bar bundle and single cylindrical bar separately,so as to provide technical support for the manufacture and development of this experimental device.The results showed that the introduced two-by-two form SHPB device expanded the scope of practical application,and the wave dispersion effect existing in a large-diameter bar can be evidently reduced when we employed the bar bundle form,indicating its applicability to the dynamic mechanical experiments of concrete-like heterogeneous materials.展开更多
The main purpose in many randomized trials is to make an inference about the average causal effect of a treatment. Therefore, on a binary outcome, the null hypothesis for the hypothesis test should be that the causal ...The main purpose in many randomized trials is to make an inference about the average causal effect of a treatment. Therefore, on a binary outcome, the null hypothesis for the hypothesis test should be that the causal risks are equal in the two groups. This null hypothesis is referred to as the weak causal null hypothesis. Nevertheless, at present, hypothesis tests applied in actual randomized trials are not for this null hypothesis;Fisher’s exact test is a test for the sharp causal null hypothesis that the causal effect of treatment is the same for all subjects. In general, the rejection of the sharp causal null hypothesis does not mean that the weak causal null hypothesis is rejected. Recently, Chiba developed new exact tests for the weak causal null hypothesis: a conditional exact test, which requires that a marginal total is fixed, and an unconditional exact test, which does not require that a marginal total is fixed and depends rather on the ratio of random assignment. To apply these exact tests in actual randomized trials, it is inevitable that the sample size calculation must be performed during the study design. In this paper, we present a sample size calculation procedure for these exact tests. Given the sample size, the procedure can derive the exact test power, because it examines all the patterns that can be obtained as observed data under the alternative hypothesis without large sample theories and any assumptions.展开更多
Based on the PMHSS preconditioning matrix, we construct a class of rotated block triangular preconditioners for block two-by-two matrices of real square blocks, and analyze the eigen-properties of the corresponding pr...Based on the PMHSS preconditioning matrix, we construct a class of rotated block triangular preconditioners for block two-by-two matrices of real square blocks, and analyze the eigen-properties of the corresponding preconditioned matrices. Numerical experiments show that these rotated block triangular pre- conditioners can be competitive to and even more efficient than the PMHSS preconditioner when they are used to accelerate Krylov subspeme iteration methods for solving block two-by-two linear systems with coefficient matrices possibly of nonsymmetric sub-blocks.展开更多
This paper deals with fast and reliable numerical solution methods for the incompress- ible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing equations, the Picard and Newton methods a...This paper deals with fast and reliable numerical solution methods for the incompress- ible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing equations, the Picard and Newton methods are used to linearize these coupled partial dif- ferential equations. For space discretization we use the finite element method and utilize the two-by-two block structure of the matrices in the arising algebraic systems of equa- tions. The Krylov subspace iterative methods are chosen to solve the linearized discrete systems and the development of computationally and numerically efficient preconditioners for the two-by-two block matrices is the main concern in this paper. In non-Newtonian flows, the viscosity is not constant and its variation is an important factor that effects the performance of some already known preconditioning techniques. In this paper we examine the performance of several preconditioners for variable viscosity applications, and improve them further to be robust with respect to variations in viscosity.展开更多
基金the National Natural Science Foundation of China under Grant Nos.61273311 and 61803247.
文摘This paper proposes a two-parameter block triangular splitting(TPTS)preconditioner for the general block two-by-two linear systems.The eigenvalues of the corresponding preconditioned matrix are proved to cluster around 0 or 1 under mild conditions.The limited numerical results show that the TPTS preconditioner is more efficient than the classic block-diagonal and block-triangular preconditioners when applied to the flexible generalized minimal residual(FGMRES)method.
文摘For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to high-quality preconditioning matrices for some typical matrices from the real-world applications.
文摘In this paper we examine 5 indexes (the two Yule’s indexes, the chi square, the odds ratio and an elementary index) of a two-by-two table, which estimate the correlation coefficient ρ in a bivariate Bernoulli distribution. We will find the compact expression of the influence functions, which allow the quantification of the effect of an infinitesimal contamination of the probability of any pair of attributes of the bivariate random variable distributed according to the above-mentioned model. We prove that the only unbiased index is the chi square. In order to determine the indexes, which are less sensitive to contamination, we obtain the expressions of three synthetic measures of the influence function, which are the maximum contamination (gross sensitivity error), the mean square deviation and the variance. These results, even if don’t allow a definitive assessment of the overall optimum properties of the five indexes, as not all of them are unbiased, nevertheless they allow to appreciating the synthetic entity of the effect of the contaminations in the estimation of the parameter ρ of the bivariate Bernoulli distribution.
基金supported by the National Basic Research Program (No.2005CB321702)the China NNSF Outstanding Young Scientist Foundation (No.10525102)the National Natural Science Foundation (No.10471146),P.R.China
文摘The restrictively preconditioned conjugate gradient (RPCG) method is further developed to solve large sparse system of linear equations of a block two-by-two structure. The basic idea of this new approach is that we apply the RPCG method to the normal-residual equation of the block two-by-two linear system and construct each required approximate matrix by making use of the incomplete orthogonal factorization of the involved matrix blocks. Numerical experiments show that the new method, called the restrictively preconditioned conjugate gradient on normal residual (RPCGNR), is more robust and effective than either the known RPCG method or the standard conjugate gradient on normal residual (CGNR) method when being used for solving the large sparse saddle point problems.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51971188 and 51071134)the Science and Technology Major Project of Hunan Province(Grant No.2019GK1012)Huxiang High-Level Talent Gathering Program of Hunan Province-Innovative team(Grant No.2019RS1059).All these supports are acknowledged.
文摘A split Hopkinson pressure bar(SHPB)device in two-by-two form,including the bar bundle form and the single cylindrical bar form,was designed in response to the demand for the dynamic mechanical experiments for brittle materials such as concrete,rock,etc.The stress waveforms generated through a projectile impacting two different types of incident bars have been studied based on the one-dimensional stress wave theory and numerical simulation method.At last,based on the established two types of mesoscale concrete models with random convex polyhedral aggregates,we performed comparison analysis of SHPB numerical simulations for concrete materials with bar bundle and single cylindrical bar separately,so as to provide technical support for the manufacture and development of this experimental device.The results showed that the introduced two-by-two form SHPB device expanded the scope of practical application,and the wave dispersion effect existing in a large-diameter bar can be evidently reduced when we employed the bar bundle form,indicating its applicability to the dynamic mechanical experiments of concrete-like heterogeneous materials.
文摘The main purpose in many randomized trials is to make an inference about the average causal effect of a treatment. Therefore, on a binary outcome, the null hypothesis for the hypothesis test should be that the causal risks are equal in the two groups. This null hypothesis is referred to as the weak causal null hypothesis. Nevertheless, at present, hypothesis tests applied in actual randomized trials are not for this null hypothesis;Fisher’s exact test is a test for the sharp causal null hypothesis that the causal effect of treatment is the same for all subjects. In general, the rejection of the sharp causal null hypothesis does not mean that the weak causal null hypothesis is rejected. Recently, Chiba developed new exact tests for the weak causal null hypothesis: a conditional exact test, which requires that a marginal total is fixed, and an unconditional exact test, which does not require that a marginal total is fixed and depends rather on the ratio of random assignment. To apply these exact tests in actual randomized trials, it is inevitable that the sample size calculation must be performed during the study design. In this paper, we present a sample size calculation procedure for these exact tests. Given the sample size, the procedure can derive the exact test power, because it examines all the patterns that can be obtained as observed data under the alternative hypothesis without large sample theories and any assumptions.
基金supported by National Natural Science Foundation of China(Grant Nos.11021101 and 91118001)the Hundred Talent Project of Chinese Academy of Sciences and the National Basic Research Program(Grant No.2011CB309703)
文摘Based on the PMHSS preconditioning matrix, we construct a class of rotated block triangular preconditioners for block two-by-two matrices of real square blocks, and analyze the eigen-properties of the corresponding preconditioned matrices. Numerical experiments show that these rotated block triangular pre- conditioners can be competitive to and even more efficient than the PMHSS preconditioner when they are used to accelerate Krylov subspeme iteration methods for solving block two-by-two linear systems with coefficient matrices possibly of nonsymmetric sub-blocks.
文摘This paper deals with fast and reliable numerical solution methods for the incompress- ible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing equations, the Picard and Newton methods are used to linearize these coupled partial dif- ferential equations. For space discretization we use the finite element method and utilize the two-by-two block structure of the matrices in the arising algebraic systems of equa- tions. The Krylov subspace iterative methods are chosen to solve the linearized discrete systems and the development of computationally and numerically efficient preconditioners for the two-by-two block matrices is the main concern in this paper. In non-Newtonian flows, the viscosity is not constant and its variation is an important factor that effects the performance of some already known preconditioning techniques. In this paper we examine the performance of several preconditioners for variable viscosity applications, and improve them further to be robust with respect to variations in viscosity.