As a new structure of solid matter quasicrystal brings profound new ideas to the traditional condensed matter physics, its elastic equations are more complicated than that of traditional crystal. A contact problem of ...As a new structure of solid matter quasicrystal brings profound new ideas to the traditional condensed matter physics, its elastic equations are more complicated than that of traditional crystal. A contact problem of decagonal two? dimensional quasicrystal material under the action of a rigid flat die is solved satisfactorily by introducing displacement function and using Fourier analysis and dual integral equations theory, and the analytical expressions of stress and displacement fields of the contact problem are achieved. The results show that if the contact displacement is a constant in the contact zone, the vertical contact stress has order -1/2 singularity on the edge of contact zone, which provides the important mechanics parameter for contact deformation of the quasicrystal.展开更多
In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four s...In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four sections: 1. Historical review. 2. Scalar conservation laws. 3. Euler equations. 4. Simplified models.展开更多
This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial diffe...This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial differential equations of the above 2D problems is rewritten as an upper triangular differential system. For the associated operator matrix, the existence and the completeness of two normed orthogonal eigenfunction systems in some space are obtained, which belong to the two block operators arising in the operator matrix. Moreover, the general solution to the above 2D problem is given by the eigenfunction expansion method.展开更多
Using a polarization method, the scattering problem for a two-dimensional inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To achieve the purpose, the polarization method for a two-...Using a polarization method, the scattering problem for a two-dimensional inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To achieve the purpose, the polarization method for a two-dimensional piezoelectric/piezomagnetic "comparison body" is formulated. For simple harmonic motion, kernel of the polarization method reduces to a 2-D time-harmonic Green's function, which is obtained using the Radon transform. The expression is further simplified under conditions of low frequency of the incident wave and small diameter of the inclusion. Some analytical expressions are obtained. The analytical solutions for generalized piezoelectric/piezomagnetic anisotropic composites are given followed by simplified results for piezoelectric composites. Based on the latter results, two numerical results are provided for an elliptical cylindrical inclusion in a PZT-5H-matrix, showing the effect of different factors including size, shape, material properties, and piezoelectricity on the scattering cross-section.展开更多
We are concerned with global solutions of multidimensional(M-D)Riemann problems for nonlinear hyperbolic systems of conservation laws,focusing on their global configurations and structures.We present some recent devel...We are concerned with global solutions of multidimensional(M-D)Riemann problems for nonlinear hyperbolic systems of conservation laws,focusing on their global configurations and structures.We present some recent developments in the rigorous analysis of two-dimensional(2-D)Riemann problems involving transonic shock waves through several prototypes of hyperbolic systems of conservation laws and discuss some further M-D Riemann problems and related problems for nonlinear partial differential equations.In particular,we present four different 2-D Riemann problems through these prototypes of hyperbolic systems and show how these Riemann problems can be reformulated/solved as free boundary problems with transonic shock waves as free boundaries for the corresponding nonlinear conservation laws of mixed elliptic-hyperbolic type and related nonlinear partial differential equations.展开更多
This paper studies the eigenfunction expansion method to solve the two dimensional (2D) elasticity problems based on the stress formulation. The fundamental system of partial differential equations of the 2D problem...This paper studies the eigenfunction expansion method to solve the two dimensional (2D) elasticity problems based on the stress formulation. The fundamental system of partial differential equations of the 2D problems is rewritten as an upper tri angular differential system based on the known results, and then the associated upper triangular operator matrix matrix is obtained. By further research, the two simpler com plete orthogonal systems of eigenfunctions in some space are obtained, which belong to the two block operators arising in the operator matrix. Then, a more simple and conve nient general solution to the 2D problem is given by the eigenfunction expansion method. Furthermore, the boundary conditions for the 2D problem, which can be solved by this method, are indicated. Finally, the validity of the obtained results is verified by a specific example.展开更多
The Riemann problem for a two-dimensional 2 x 2 nonstrictly hyperbolic system of nonlinear conservation laws has been solved thoroughly for any given initial data which are constant in each quadrant. The non-classical...The Riemann problem for a two-dimensional 2 x 2 nonstrictly hyperbolic system of nonlinear conservation laws has been solved thoroughly for any given initial data which are constant in each quadrant. The non-classical shockwaves, which are labelled as delta-shock waves, appear in some solutions. The solutions have been obtained are not unique. Due to the specific property of the system considered, there are no rarefaction waves in solution. This paper is divided into three parts. The first part constructs Riemann solutions for initial data involving two contact discontinuities while the second considers the case for other initial data. The last part briefly discusses the non-uniqueness of the solutions.展开更多
Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction ...Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints is presented. In particular, a wheeled multi-body system is considered. Here, the state transition of stick-slip between wheel and ground is transformed into a nonlinear complementarity problem (NCP). An iterative algorithm for solving the NCP is then presented using an event-driven method. Dynamical equations of the multi-body system with holonomic and nonholonomic constraints are given using Routh equations and a con- straint stabilization method. Finally, an example is used to test the proposed numerical method. The results show some dynamical behaviors of the wheeled multi-body system and its constraint stabilization effects.展开更多
In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm i...In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.展开更多
We are concerned with the global existence of entropy solutions of the two-dimensional steady Euler equations for an ideal gas, which undergoes a one-step exothermic chemical reaction under the Arrhenius-type kinetics...We are concerned with the global existence of entropy solutions of the two-dimensional steady Euler equations for an ideal gas, which undergoes a one-step exothermic chemical reaction under the Arrhenius-type kinetics. The reaction rate function φ(T ) is assumed to have a positive lower bound. We first consider the Cauchy problem (the initial value problem), that is, seek a supersonic downstream reacting flow when the incoming flow is supersonic, and establish the global existence of entropy solutions when the total variation of the initial data is sufficiently small. Then we analyze the problem of steady supersonic, exothermically reacting Euler flow past a Lipschitz wedge, generating an ad-ditional detonation wave attached to the wedge vertex, which can be then formulated as an initial-boundary value problem. We establish the global existence of entropy solutions containing the additional detonation wave (weak or strong, determined by the wedge angle at the wedge vertex) when the total variation of both the slope of the wedge boundary and the incoming flow is suitably small. The downstream asymptotic behavior of the global solutions is also obtained.展开更多
The generalized 2D problem in piezoelectric media with collinear cracks is addressed based on Stroh's formulation and the exact electric boundary conditions on the crack faces. Exact solutions are obtained, respec...The generalized 2D problem in piezoelectric media with collinear cracks is addressed based on Stroh's formulation and the exact electric boundary conditions on the crack faces. Exact solutions are obtained, respectively, for two special cases: one is that a piezoelectric solid withN collinear cracks is subjected to uniform loads at infinity, and the other is that a piezoelectric solid containing a single crack is subjected to a line load at an arbitrary point. It is shown when uniform loads are applied at infinity or on the crack faces that, the stress intensity factors are the same as those of isotropic materials, while the intensity factor of electric displacement is dependent on the material constants and the applied mechanical loads, but not on the applied electric loads. Moreover, it is found that the electric field inside any crack is not equal to zero, which is related to the material properties and applied mechanical-electric loads.展开更多
By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which invo...By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which involve the Guckenheimer structure, were constructed.展开更多
A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoot...A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.展开更多
The inverse problem of reconstructing the time-dependent thermal conductivity and free boundary coefcients along with the temperature in a two-dimensional parabolic equation with initial and boundary conditions and ad...The inverse problem of reconstructing the time-dependent thermal conductivity and free boundary coefcients along with the temperature in a two-dimensional parabolic equation with initial and boundary conditions and additional measurements is,for the rst time,numerically investigated.This inverse problem appears extensively in the modelling of various phenomena in engineering and physics.For instance,steel annealing,vacuum-arc welding,fusion welding,continuous casting,metallurgy,aircraft,oil and gas production during drilling and operation of wells.From literature we already know that this inverse problem has a unique solution.However,the problem is still ill-posed by being unstable to noise in the input data.For the numerical realization,we apply the alternating direction explicit method along with the Tikhonov regularization to nd a stable and accurate numerical solution of nite differences.The root mean square error(rmse)values for various noise levels p for both smooth and non-smooth continuous time-dependent coef-cients Examples are compared.The resulting nonlinear minimization problem is solved numerically using the MATLAB subroutine lsqnonlin.Both exact and numerically simulated noisy input data are inverted.Numerical results presented for two examples show the efciency of the computational method and the accuracy and stability of the numerical solution even in the presence of noise in the input data.展开更多
This paper studies the two-dimensional layout optimization problem. An optimization model with performance constraints is presented. The layout problem is partitioned into finite subproblems in terms of graph theory, ...This paper studies the two-dimensional layout optimization problem. An optimization model with performance constraints is presented. The layout problem is partitioned into finite subproblems in terms of graph theory, in such a way of that each subproblem overcomes its on-off nature optimal variable. A minimax problem is constructed that is locally equivalent to each subproblem. By using this minimax problem, we present the optimality function for every subproblem and prove that the first order necessary optimality condition is satisfied at a point if and only if this point is a zero of optimality function.展开更多
A multistep characteristic finite difference method is given on the basis ofthe linear and quadratic interpolations for solving two-dimensional nonlinear convection-diffusion problems. The convergence of approximate s...A multistep characteristic finite difference method is given on the basis ofthe linear and quadratic interpolations for solving two-dimensional nonlinear convection-diffusion problems. The convergence of approximate solutions is obtained in L2.展开更多
In this paper, we prove the global existence of generalized solutions to a two-dimensional Cauchy problem of a hyperbolic system by introducing a new definition of generalized solution. Moreover, the solution may invo...In this paper, we prove the global existence of generalized solutions to a two-dimensional Cauchy problem of a hyperbolic system by introducing a new definition of generalized solution. Moreover, the solution may involve delta-wave.展开更多
We calculate the energy spectrum of three identical fermionic ultracold atoms in two different internal states confined in a two-dimensional anisotropic harmonic trap.Using the solutions of the corresponding two-body ...We calculate the energy spectrum of three identical fermionic ultracold atoms in two different internal states confined in a two-dimensional anisotropic harmonic trap.Using the solutions of the corresponding two-body problems obtained in our previous work(Chen et al 2020 Phys.Rev.A 101,053624),we derive the explicit transcendental equation for the eigen-energies,from which the energy spectrum is derived.Our results can be used for the calculation of the 3rd Virial coefficients or the studies of few-body dynamics.展开更多
We combine the maximum principle for vector-valued mappings established by D'Ottavio, Leonetti and Musciano [7] with regularity results from [5] and prove the Holder continuity of the first derivatives for local mini...We combine the maximum principle for vector-valued mappings established by D'Ottavio, Leonetti and Musciano [7] with regularity results from [5] and prove the Holder continuity of the first derivatives for local minimizers u: Ω→^R^N of splitting-type variational integrals provided Ω is a domain in R^2.展开更多
The aim of this paper is to find the time-dependent term numerically in a two-dimensional heat equation using initial and Neumann boundary conditions and nonlocal integrals as over-determination conditions.This is a v...The aim of this paper is to find the time-dependent term numerically in a two-dimensional heat equation using initial and Neumann boundary conditions and nonlocal integrals as over-determination conditions.This is a very interesting and challenging nonlinear inverse coefficient problem with important applications in various fields ranging from radioactive decay,melting or cooling processes,electronic chips,acoustics and geophysics to medicine.Unique solvability theo-rems of these inverse problems are supplied.However,since the problems are still ill-posed(a small modification in the input data can lead to bigger impact on the ultimate result in the output solution)the solution needs to be regularized.Therefore,in order to obtain a stable solution,a regularized objective function is minimized in order to retrieve the unknown coefficient.The two-dimensional inverse problem is discretized using the forward time central space(FTCS)finite-difference method(FDM),which is conditionally stable and recast as a non-linear least-squares minimization of the Tikhonov regularization function.Numerically,this is effectively solved using the MATLAB subroutine lsqnonlin.Both exact and noisy data are inverted.Numerical results for a few benchmark test examples are presented,discussed and assessed with respect to the FTCS-FDM mesh size discretisation,the level of noise with which the input data is contaminated,and the choice of the regularization parameter is discussed based on the trial and error technique.展开更多
文摘As a new structure of solid matter quasicrystal brings profound new ideas to the traditional condensed matter physics, its elastic equations are more complicated than that of traditional crystal. A contact problem of decagonal two? dimensional quasicrystal material under the action of a rigid flat die is solved satisfactorily by introducing displacement function and using Fourier analysis and dual integral equations theory, and the analytical expressions of stress and displacement fields of the contact problem are achieved. The results show that if the contact displacement is a constant in the contact zone, the vertical contact stress has order -1/2 singularity on the edge of contact zone, which provides the important mechanics parameter for contact deformation of the quasicrystal.
基金supported by 973 Key program and the Key Program from Beijing Educational Commission with No. KZ200910028002Program for New Century Excellent Talents in University (NCET)+4 种基金Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR-IHLB)The research of Sheng partially supported by NSFC (10671120)Shanghai Leading Academic Discipline Project: J50101The research of Zhang partially supported by NSFC (10671120)The research of Zheng partially supported by NSF-DMS-0603859
文摘In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four sections: 1. Historical review. 2. Scalar conservation laws. 3. Euler equations. 4. Simplified models.
基金Project supported by the National Natural Science Foundation of China (No. 10962004)the Special-ized Research Fund for the Doctoral Program of Higher Education of China (No. 20070126002)+1 种基金the Chunhui Program of Ministry of Education of China (No. Z2009-1-01010)the Natural Science Foundation of Inner Mongolia (No. 2009BS0101)
文摘This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial differential equations of the above 2D problems is rewritten as an upper triangular differential system. For the associated operator matrix, the existence and the completeness of two normed orthogonal eigenfunction systems in some space are obtained, which belong to the two block operators arising in the operator matrix. Moreover, the general solution to the above 2D problem is given by the eigenfunction expansion method.
基金supported by the National Natural Science Foundation of China (Nos. 10732100, 10572155)the Science and Technology Planning Project of Guangdong Province of China (No. 2006A11001002)the Ph. D. Programs Foundation of Ministry of Education of China (No. 2006300004111179)
文摘Using a polarization method, the scattering problem for a two-dimensional inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To achieve the purpose, the polarization method for a two-dimensional piezoelectric/piezomagnetic "comparison body" is formulated. For simple harmonic motion, kernel of the polarization method reduces to a 2-D time-harmonic Green's function, which is obtained using the Radon transform. The expression is further simplified under conditions of low frequency of the incident wave and small diameter of the inclusion. Some analytical expressions are obtained. The analytical solutions for generalized piezoelectric/piezomagnetic anisotropic composites are given followed by simplified results for piezoelectric composites. Based on the latter results, two numerical results are provided for an elliptical cylindrical inclusion in a PZT-5H-matrix, showing the effect of different factors including size, shape, material properties, and piezoelectricity on the scattering cross-section.
基金The research of Gui-Qiang G.Chen was supported in part by the UK Engineering and Physical Sciences Research Council Awards EP/L015811/1,EP/V008854/1,EP/V051121/1the Royal Society-Wolfson Research Merit Award WM090014.
文摘We are concerned with global solutions of multidimensional(M-D)Riemann problems for nonlinear hyperbolic systems of conservation laws,focusing on their global configurations and structures.We present some recent developments in the rigorous analysis of two-dimensional(2-D)Riemann problems involving transonic shock waves through several prototypes of hyperbolic systems of conservation laws and discuss some further M-D Riemann problems and related problems for nonlinear partial differential equations.In particular,we present four different 2-D Riemann problems through these prototypes of hyperbolic systems and show how these Riemann problems can be reformulated/solved as free boundary problems with transonic shock waves as free boundaries for the corresponding nonlinear conservation laws of mixed elliptic-hyperbolic type and related nonlinear partial differential equations.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20070126002)the National Natural Science Foundation of China (No. 10962004)
文摘This paper studies the eigenfunction expansion method to solve the two dimensional (2D) elasticity problems based on the stress formulation. The fundamental system of partial differential equations of the 2D problems is rewritten as an upper tri angular differential system based on the known results, and then the associated upper triangular operator matrix matrix is obtained. By further research, the two simpler com plete orthogonal systems of eigenfunctions in some space are obtained, which belong to the two block operators arising in the operator matrix. Then, a more simple and conve nient general solution to the 2D problem is given by the eigenfunction expansion method. Furthermore, the boundary conditions for the 2D problem, which can be solved by this method, are indicated. Finally, the validity of the obtained results is verified by a specific example.
文摘The Riemann problem for a two-dimensional 2 x 2 nonstrictly hyperbolic system of nonlinear conservation laws has been solved thoroughly for any given initial data which are constant in each quadrant. The non-classical shockwaves, which are labelled as delta-shock waves, appear in some solutions. The solutions have been obtained are not unique. Due to the specific property of the system considered, there are no rarefaction waves in solution. This paper is divided into three parts. The first part constructs Riemann solutions for initial data involving two contact discontinuities while the second considers the case for other initial data. The last part briefly discusses the non-uniqueness of the solutions.
基金Project supported by the National Natural Science Foundation of China(Nos.11372018 and 11572018)
文摘Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints is presented. In particular, a wheeled multi-body system is considered. Here, the state transition of stick-slip between wheel and ground is transformed into a nonlinear complementarity problem (NCP). An iterative algorithm for solving the NCP is then presented using an event-driven method. Dynamical equations of the multi-body system with holonomic and nonholonomic constraints are given using Routh equations and a con- straint stabilization method. Finally, an example is used to test the proposed numerical method. The results show some dynamical behaviors of the wheeled multi-body system and its constraint stabilization effects.
文摘In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.
基金Gui-Qiang CHEN was supported in part by the UK EPSRC Science and Innovation Award to the Oxford Centre for Nonlinear PDE(EP/E035027/1)the NSFC under a joint project Grant 10728101+4 种基金the Royal Society-Wolfson Research Merit Award(UK)Changguo XIAO was supported in part by the NSFC under a joint project Grant 10728101Yongqian ZHANG was supported in part by NSFC Project 11031001NSFC Project 11121101the 111 Project B08018(China)
文摘We are concerned with the global existence of entropy solutions of the two-dimensional steady Euler equations for an ideal gas, which undergoes a one-step exothermic chemical reaction under the Arrhenius-type kinetics. The reaction rate function φ(T ) is assumed to have a positive lower bound. We first consider the Cauchy problem (the initial value problem), that is, seek a supersonic downstream reacting flow when the incoming flow is supersonic, and establish the global existence of entropy solutions when the total variation of the initial data is sufficiently small. Then we analyze the problem of steady supersonic, exothermically reacting Euler flow past a Lipschitz wedge, generating an ad-ditional detonation wave attached to the wedge vertex, which can be then formulated as an initial-boundary value problem. We establish the global existence of entropy solutions containing the additional detonation wave (weak or strong, determined by the wedge angle at the wedge vertex) when the total variation of both the slope of the wedge boundary and the incoming flow is suitably small. The downstream asymptotic behavior of the global solutions is also obtained.
基金The project supported by the National Natural Science Foundation of China(19772004)
文摘The generalized 2D problem in piezoelectric media with collinear cracks is addressed based on Stroh's formulation and the exact electric boundary conditions on the crack faces. Exact solutions are obtained, respectively, for two special cases: one is that a piezoelectric solid withN collinear cracks is subjected to uniform loads at infinity, and the other is that a piezoelectric solid containing a single crack is subjected to a line load at an arbitrary point. It is shown when uniform loads are applied at infinity or on the crack faces that, the stress intensity factors are the same as those of isotropic materials, while the intensity factor of electric displacement is dependent on the material constants and the applied mechanical loads, but not on the applied electric loads. Moreover, it is found that the electric field inside any crack is not equal to zero, which is related to the material properties and applied mechanical-electric loads.
文摘By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which involve the Guckenheimer structure, were constructed.
文摘A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.
文摘The inverse problem of reconstructing the time-dependent thermal conductivity and free boundary coefcients along with the temperature in a two-dimensional parabolic equation with initial and boundary conditions and additional measurements is,for the rst time,numerically investigated.This inverse problem appears extensively in the modelling of various phenomena in engineering and physics.For instance,steel annealing,vacuum-arc welding,fusion welding,continuous casting,metallurgy,aircraft,oil and gas production during drilling and operation of wells.From literature we already know that this inverse problem has a unique solution.However,the problem is still ill-posed by being unstable to noise in the input data.For the numerical realization,we apply the alternating direction explicit method along with the Tikhonov regularization to nd a stable and accurate numerical solution of nite differences.The root mean square error(rmse)values for various noise levels p for both smooth and non-smooth continuous time-dependent coef-cients Examples are compared.The resulting nonlinear minimization problem is solved numerically using the MATLAB subroutine lsqnonlin.Both exact and numerically simulated noisy input data are inverted.Numerical results presented for two examples show the efciency of the computational method and the accuracy and stability of the numerical solution even in the presence of noise in the input data.
文摘This paper studies the two-dimensional layout optimization problem. An optimization model with performance constraints is presented. The layout problem is partitioned into finite subproblems in terms of graph theory, in such a way of that each subproblem overcomes its on-off nature optimal variable. A minimax problem is constructed that is locally equivalent to each subproblem. By using this minimax problem, we present the optimality function for every subproblem and prove that the first order necessary optimality condition is satisfied at a point if and only if this point is a zero of optimality function.
文摘A multistep characteristic finite difference method is given on the basis ofthe linear and quadratic interpolations for solving two-dimensional nonlinear convection-diffusion problems. The convergence of approximate solutions is obtained in L2.
文摘In this paper, we prove the global existence of generalized solutions to a two-dimensional Cauchy problem of a hyperbolic system by introducing a new definition of generalized solution. Moreover, the solution may involve delta-wave.
基金supported in part by the National Key Research and Development Program of China Grant No.2018YFA0306502NSAF(Grant No.U1930201)+1 种基金supported by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China under Grant No.21XNH088。
文摘We calculate the energy spectrum of three identical fermionic ultracold atoms in two different internal states confined in a two-dimensional anisotropic harmonic trap.Using the solutions of the corresponding two-body problems obtained in our previous work(Chen et al 2020 Phys.Rev.A 101,053624),we derive the explicit transcendental equation for the eigen-energies,from which the energy spectrum is derived.Our results can be used for the calculation of the 3rd Virial coefficients or the studies of few-body dynamics.
文摘We combine the maximum principle for vector-valued mappings established by D'Ottavio, Leonetti and Musciano [7] with regularity results from [5] and prove the Holder continuity of the first derivatives for local minimizers u: Ω→^R^N of splitting-type variational integrals provided Ω is a domain in R^2.
文摘The aim of this paper is to find the time-dependent term numerically in a two-dimensional heat equation using initial and Neumann boundary conditions and nonlocal integrals as over-determination conditions.This is a very interesting and challenging nonlinear inverse coefficient problem with important applications in various fields ranging from radioactive decay,melting or cooling processes,electronic chips,acoustics and geophysics to medicine.Unique solvability theo-rems of these inverse problems are supplied.However,since the problems are still ill-posed(a small modification in the input data can lead to bigger impact on the ultimate result in the output solution)the solution needs to be regularized.Therefore,in order to obtain a stable solution,a regularized objective function is minimized in order to retrieve the unknown coefficient.The two-dimensional inverse problem is discretized using the forward time central space(FTCS)finite-difference method(FDM),which is conditionally stable and recast as a non-linear least-squares minimization of the Tikhonov regularization function.Numerically,this is effectively solved using the MATLAB subroutine lsqnonlin.Both exact and noisy data are inverted.Numerical results for a few benchmark test examples are presented,discussed and assessed with respect to the FTCS-FDM mesh size discretisation,the level of noise with which the input data is contaminated,and the choice of the regularization parameter is discussed based on the trial and error technique.