Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,bu...Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,but they are mostly used in low-energy(≤130 keV)regions.Direct detection of MeV X-rays,which ensure thorough penetration of the thick shell walls of containers,trucks,and aircraft,is also highly desired in practical industrial applications.Unfortunately,scintillation semiconductors for high-energy X-ray detection are currently scarce.Here,This paper reports a 2D(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single crystal with outstanding sensitivity and stability toward X-ray radiation that provides an ultra-wide detectable X-ray range of between 8.20 nGy_(air)s^(-1)(50 keV)and 15.24 mGy_(air)s^(-1)(9 MeV).The(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single-crystal detector with a vertical structure is used for high-performance X-ray imaging,delivering a good spatial resolution of 4.3 Ip mm^(-1)in a plane-scan imaging system.Low ionic migration in the 2D perovskite enables the vertical device to be operated with hundreds of keV to MeV X-ray radiation at high bias voltages,leading to a sensitivity of 46.90μC Gy_(air)-1 cm^(-2)(-1.16 Vμm^(-1))with 9 MeV X-ray radiation,demonstrating that 2D perovskites have enormous potential for high-energy industrial applications.展开更多
In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress di...In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress.展开更多
Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of...Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of monolayer group-IV monochalcogenides MX(M=Sn,Ge;X=Se,Te,S)via strain engineering,and their effects with contaminated hydrogen are also discussed.GeSe,GeTe,and GeS do not go through transition up to the compressive strain of-5%,and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain.According to the calculated ferroelectric properties and the band gaps of these materials,we find that their band gap can be adjusted by strain for excellent photovoltaic applications.In addition,we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe.It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H.As a result,hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS.展开更多
This study evaluated the change in regional left ventricular myocardial function in rats following acute occlusion of the left anterior descending coronary artery (LAD) by using two-dimensional speckle tracking imag...This study evaluated the change in regional left ventricular myocardial function in rats following acute occlusion of the left anterior descending coronary artery (LAD) by using two-dimensional speckle tracking imaging (2D-STI). Sixty Wistar rats were randomly divided into two groups, a myocardial infarction (MI) group, in which 50 rats were subjected to LAD occlusion for 30–45 min, and a sham-operated (SHAM) group that contained 10 rats serving as control. Echo-cardiography was performed at baseline and 1, 4 and 8 week(s) after the operation. High frequency two-dimensional images of left ventricular short axis at papillary muscle level were recorded. Peak systolic radial strain (PRS) and circumferential strain (PCS) were measured in the mid-ventricle in short-axis view by using EchoPAC workstation. Left ventricular internal diameter at diastole (LVIDd) and systole (LVIDs), fractional shortening (FS), ejection fraction (EF) and left ventricular mass (LVM) were measured by anatomical M-model echocardiography. Infarct size was measured using triphenyl tetrazolium chloride (TTC) staining 1 week and 8 weeks after the operation. Fibrosis of left ventricu-lar myocardium was displayed using Van Gieson staining 1 week after the infarction. In terms of the TTC staining results, the left ventricle fell into three categories: infarcted, peri-infarcted and remote myocardial regions. Compared with those at baseline and in the SHAM group, (1) PRS and PCS in the infarcted, peri-infarcted and remote myocardial regions were significantly decreased in the MI group within 1 week after the operation (P〈0.05) and the low levels lasted 8 weeks; (2) Compared with those at baseline, LVIDd, LVIDs, FS, EF and LVM in the MI group showed no significant dif-ference 1 week after the operation (P〉0.05). However, LVIDd, LVIDs and LVM were increased sig-nificantly 4 and 8 weeks after the operation (P〈0.05), and FS and EF were decreased substantially (P〈0.05). Van Gieson staining showed that fibrosis developed in all the three myocardial regions to varying degrees. It is concluded that 2D-STI is non-invasive and can be used to assess regional func-tion of myocardium with different blood supply in rats following acute occlusion of the LAD, and can be used as a sensitive and reliable means to follow up the process of left ventricular remodeling.展开更多
Background Identifying the transmural extent of myocardial necrosis and the degree of myocardial viability in acute myocardial infarction (AMI) is important clinically. The aim of this study was to assess myocardial...Background Identifying the transmural extent of myocardial necrosis and the degree of myocardial viability in acute myocardial infarction (AMI) is important clinically. The aim of this study was to assess myocardial viability using two-dimensional speckle tracking imaging (2D-STI) in patients with AMI. Methods 2D-STI was performed at initial presentation, three days, and six months after primary percutaneous coronary intervention (PCI) in 30 patients with AMI, who had a left anterior descending coronary artery (LAD) culprit lesion. In addition, 20 patients who had minimal stenotic lesions (〈 30% stenosis) on coronary angiography were also included in the control group. At six months dobutamine echocardiography was performed for viability assessment in seven segments of the LAD territory. According to the recovery of wall motion abnormality, segments were classified as viable or non-viable. Results A total of 131 segments were viable, and 44 were nonviable. Multivariate analysis revealed significant differences between the viable and nonviable segments in the peak systolic strain, the peak systolic strain rate at initial presentation, and peak systolic strain rate three days after primary PCI. Among these, the initial peak systolic strain rate had the highest predictive value for myocardial viability (hazard ratio: 31.22, P 〈 0.01). Conclusions 2D-STI is feasible for assessing myocardial viability, and the peak systolic strain rate might be the most reliable predictor of myocardial viability in patients with AMI.展开更多
We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before i...We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before is employed as a light source. The main problem encountered by the 2D lensless ghost imaging with true thermal light is that its coherence time is much shorter than the resolution time of the detection system. To overcome this difficulty we derive a method based on the relationship between the true and measured values of the second-order optical intensity correlation, by which means the visibility of the ghost image can be dramatically enhanced. This method would also be suitable for ghost imaging with natural sunlight.展开更多
Objective: To research the clinical application of two-dimensional speckle tracking imaging (2D-STI) in quantitative assessment of left ventricular function in patients with obstructive sleep apnea-hypopnea syndrome (...Objective: To research the clinical application of two-dimensional speckle tracking imaging (2D-STI) in quantitative assessment of left ventricular function in patients with obstructive sleep apnea-hypopnea syndrome (OSAS). Method: From July 2016 to December 2018, 86 patients with OSAS were selected as OSAS group. According to sleep apnea hypopnea index (AHI), they were divided into mild OSAS group (24 cases), moderate OSAS group (29 cases) and severe OSAS group (33 cases). Another 50 healthy volunteers who underwent physical examination in our hospital during the same period were selected as the control group. The left ventricular function of all patients was quantitatively assessed by 2D-STI. The left ventricular function of all patients was quantitatively assessed by 2D-STI. The results of routine echocardiography and left ventricular global strain parameters of the OSAS group, the control group and the OSAS patients with different severity were compared and analyzed. Result: There were no significant differences in the levels of left ventricular ejection fraction (LVEF), left ventricular end diastolic diameter (LVEDd), left ventricular end systolic diameter (LVESd) between the two groups and OSAS patients with different severity (P>0.05). The levels of IVST, LVPW and LVMI in the OSAS group were significantly higher than those in the control group, the levels of end-diastolic interventricular septal thickness (IVS), left ventricular posterior wall thickness (LVPW), left ventricular mass index (LVMI) in the severe OSAS group were significantly higher than those in the mild and moderate OSAS group, and the levels of IVST, LVPW and LVMI in the moderate OSAS group were significantly higher than those in the mild OSAS group, there were significant differences between groups (P<0.05). The levels of GLS, GRS and GCS in the OSAS group were significantly lower than those in the control group (P<0.05). GLS, GRS and GCS levels in the severe OSAS group were significantly lower than those in the mild OSAS group and the moderate OSAS group, while the levels of global longitudinal strain (GLS), global radial strain (GRS) and global circumferential strain (GCS) in the moderate OSAS group were significantly lower than those in the mild OSAS group (P<0.05). Conclusion: The left ventricular systolic function of OSAS patients is obviously impaired. Left ventricular function in OSAS patients can be assessed timely and accurately by two-dimensional speckle tracking imaging.展开更多
The clinically applied value of myocardial perfusion and systolic function in patients with coronary artery disease after coronary artery bypass surgery using real-time myocardial contrast echocardiography (RT-MCE) ...The clinically applied value of myocardial perfusion and systolic function in patients with coronary artery disease after coronary artery bypass surgery using real-time myocardial contrast echocardiography (RT-MCE) combined with two-dimensional strain echocardiography was assessed. Twenty patients underwent intravenous RT-MCE by intravenous injections of SonoVue before and after coronary artery bypass surgery. Two-dimensional images were recorded from the left ventricular four-chamber view, two-chamber view and the apical view before, and two weeks and three months after coronary artery bypass surgery, and the peak systolic longitudinal strain was measured. The results showed that myocardial perfusion was significantly increased after coronary artery bypass surgery in about 71.6% segments. In the group that myocardial perfusion was improved, the peak systolic longitu- dinal strain three months after bypass surgery was significantly higher than that before operation [(-15.78±5.91)% vs (-10.45±8.31)%, P〈0.05]. However, the parameters did not change in the group without myocardial perfusion improvement [(-10.33±6.53)% vs (-9.41±6.09)%, P〉0.05]. It was concluded that whether or not the improvement of myocardial perfusion can mirror the recovery trend of regional systolic function, two-dimensional strain echocardiography can observe dynamic change of regional systolic function. The combination of myocardial perfusion with two-dimensional strain echocardiography can more accurately assess the curative effectiveness of coronary artery bypass surgery.展开更多
The value of tissue strain imaging (SI) in regional myocardial systolic and diastolic func tion assessment was studied. In 18 patients with nonobstructive hypertrophic cardiomyopathy (HCM) and 20 age-matched healt...The value of tissue strain imaging (SI) in regional myocardial systolic and diastolic func tion assessment was studied. In 18 patients with nonobstructive hypertrophic cardiomyopathy (HCM) and 20 age-matched healthy subjects, regional myocardial longitudinal peak systolic strain in eject time (represented by εet) was measured at basal, mid and apical segments of septal, lateral and posterior walls of the left ventricle (LV) and compared between groups, εet had no significant difference between segments in control group (P〉0.05), which displayed a decreasing trend from basal segments to apical ones. εet in the HCM group was significantly decreased (P(0. 05) as compared with that in the healthy group. In the HCM group, εet in the midseptum was significantly less than at the basal and apical septum, and was also less than at the rest LV walls in the same group (P〉0.01). The systolic reversed εet was noticed in 35% of the hypertrophic segments in HCM group. Significantly negative correlation existed between the absolute value of εet and wall thickness in the midseptum (r= -0.83). The post-systolic strain(PSS) segment number the and amplitudes in healthy group were significantly less than those in HCM group (P〈0.05). Both regional myocardial systolic and diastolic functions were impaired in hypertrophic or non-hypertrophic segments in patients with the HCM, especially in hypertrophic segments. Strain imaging technique is a sensitive and accura tool in myocardial dysfunction assessment.展开更多
The value of two-dimensional strain echocardiography for assessing left ventricular regional systolic function in breast cancer patients who were treated with epirubicin was evaluated. A total of 116 breast cancer pat...The value of two-dimensional strain echocardiography for assessing left ventricular regional systolic function in breast cancer patients who were treated with epirubicin was evaluated. A total of 116 breast cancer patients were divided into 3 groups: Thirty-eight patients in group A were given epirubicin (Epi) of 120-340 mg/m^2, 42 patients in group B received epimbicin of≥ 360 mg/m^2, and 36 patients after surging without chemotherapy served as the control group C. High frame rate two-dimensional images were recorded from apical long-axis view, four-chamber view, two-chamber view of left ventricle. Peak systolic strain of left ventricular subendocardial myocardium was measured using two-dimensional strain software. The conventional echocardiographic parameters were also obtained. Conventional echocardiography showed there was no significant changes in conventional echocardiographic parameters among the three groups (P〉0.05). Two-dimensional strain echocardiography revealed that the peak systolic strain of left ventricular subendocardial myocardium in group A was reduced in some segments as compared with the controls (P〈0.05). The peak systolic strain of left ventricular subendocardial myocardium in group B was reduced significantly as com- pared with group C (P〈0.05), but that was reduced in group B just in some of the segments as compared with group A (P〈0.05). It was concluded that two-dimensional strain echocardiography could early and sensitively display the effects of epirubicin-induced cardiotoxicity on the systolic function of left ventricular subendocardial myocardium, and early monitor the epirubicin-induced cardiotoxicity.展开更多
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this...To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.展开更多
To assess the left ventricular longitudinal regional myocardial systolic function by strain imaging (SI) echocardiography and to study the relationship between regional myocardial systolic function and left ventricu...To assess the left ventricular longitudinal regional myocardial systolic function by strain imaging (SI) echocardiography and to study the relationship between regional myocardial systolic function and left ventricular structure in patients with hypertrophic cardiomyopathy (HCM). S1 echocardiography were performed in 18 patients with HCM and 17 healthy subjects. For each wall, regional myocardial systolic strain was analyzed at the basal, mid, and apical level respectively. And the peak systolic strain was measured. Our results showed that the patients with HCM had reduced peak systolic strain at almost each segment of different walls when compared with healthy subjects. There was significant correlation between the mid-septum peak systolic strain and the thickness of IVS, so was the correlation between the mid-septum peak systolic strain and the IVS to LVPW thickness ratio. This study demonstrated that the left ventricular longitudinal regional myocardial systolic function was abnormal in HCM, and this kind of abnormalities existed extensively in hypertrophic and non-hypertrophic cardiac segments. The degrees of left ventricle hypertrophy and asymmetry are related to the myocardial regional systolic function in HCM.展开更多
Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging.Currently,most structural magnetic r...Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging.Currently,most structural magnetic resonance imaging literature explores brain aging merely from the perspective of morphological features,which cannot fully utilize the grayscale values containing important intrinsic information about brain structure.In this study,we propose the construction of two-dimensional horizontal visibility graphs based on the pixel intensity values of the gray matter slices directly.Normalized network structure entropy(NNSE)is then introduced to quantify the overall heterogeneities of these graphs.The results demonstrate a decrease in the NNSEs of gray matter with age.Compared with the middle-aged and the elderly,the larger values of the NNSE in the younger group may indicate more homogeneous network structures,smaller differences in importance between nodes and thus a more powerful ability to tolerate intrusion.In addition,the hub nodes of different adult age groups are primarily located in the precuneus,cingulate gyrus,superior temporal gyrus,inferior temporal gyrus,parahippocampal gyrus,insula,precentral gyrus and postcentral gyrus.Our study can provide a new perspective for understanding and exploring the structural mechanism of brain aging.展开更多
AIM:To compare the acute changes in circumferential and longitudinal strain after exposing a coronary artery to various interventions in swine.METHODS:Percutaneous balloon angioplasty catheter was guided to location a...AIM:To compare the acute changes in circumferential and longitudinal strain after exposing a coronary artery to various interventions in swine.METHODS:Percutaneous balloon angioplasty catheter was guided to location aid device(LAD)under X-ray fluoroscopy to create different patterns of ischemic insults.Pigs(n=32)were equally divided into 4 groups:controls,90 min LAD occlusion/reperfusion,LAD microembolization,and combined LAD occlusion/microembolization/reperfusion.Three days after interventions,cine,tagged and viability magnetic resonance imaging(MRI)were acquired to measure and compare left and right circumferential strain,longitudinal strain and myocardial viability,respectively.Measurements were obtained using HARP and semi-automated threshold method and statistically analyzed using unpaired t-test.Myocardial and vascular damage was characterized microscopically.RESULTS:Coronary microemboli caused greater impairment in l left ventricular(LV)circumferential strain and dyssynchrony than LAD occlusion/reperfusion despite the significant difference in the extent of myocardial damage.Microemboli also caused significant decrease in peak systolic strain rate of remote myocardium and LV dyssynchrony.Cine MRI demonstrated the interaction between LV and right ventricular(RV)at 3 d after interventions.Compensatory increase in RV free wall longitudinal strain was seen in response to all interventions.Viability MRI,histochemical staining and microscopy revealed different patterns of myocardial damage and microvascular obstruction.CONCLUSION:Cine MRI revealed subtle changes in LV strain caused by various ischemic insults.It also demonstrated the interaction between the right and left ventricles after coronary interventions.Coronary microemboli with and without acute myocardial infarction(AMI)cause complex myocardial injury and ventricular dysfunction that is not replicated in solely AMI.展开更多
Detection of local strain at the nanometer scale with high sensitivity remains challenging.Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phono...Detection of local strain at the nanometer scale with high sensitivity remains challenging.Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phonon frequency.As a non-polar crystal,intrinsic bilayer graphene possesses little infrared response at its transverse optical phonon frequency.The reported optical detection of local strain is enabled by applying a vertical electrical field that breaks the symmetry of the two graphene layers and introduces finite electrical dipole moment to graphene phonon.The activated phonon further interacts with continuum electronic transitions,and generates a strong Fano resonance.The resulted Fano resonance features a very sharp near-field infrared scattering peak,which leads to an extraordinary sensitivity of-0.002%for the strain detection.Our results demonstrate the first nano-scale near-field Fano resonance,provide a new way to probe local strains with high sensitivity in non-polar crystals,and open exciting possibilities for studying strain-induced rich phenomena.展开更多
In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe...In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm.展开更多
We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bif...We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.展开更多
The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to atte...The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.展开更多
The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging...The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging detection, the scintillator has been plagued by inherent moisture absorption and decomposition, and strict requirements for seamless packaging and waterproofing.Here, we designed a manganese-doped two-dimensional(2D) perovskite scintillator modified by hydrophobic longchain organic amine through the combination of component and doping engineering. The modified perovskites show high water repellency that can be used as an underwater X-ray scintillator. X-ray images of aquatic organisms or other objects with a high spatial resolution of10 lp·mm^(-1) at a big view field(32 mm × 32 mm) were obtained by scintillation screen. This hydrophobic perovskite scintillator based on molecular design is of great promise in underwater X-ray nondestructive testing technology development.展开更多
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con...A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.22075284,51872287,and U2030118)the Youth Innovation Promotion Association CAS(No.2019304)+1 种基金the Fund of Mindu Innovation Laboratory(No.2021ZR201)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20210039)
文摘Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,but they are mostly used in low-energy(≤130 keV)regions.Direct detection of MeV X-rays,which ensure thorough penetration of the thick shell walls of containers,trucks,and aircraft,is also highly desired in practical industrial applications.Unfortunately,scintillation semiconductors for high-energy X-ray detection are currently scarce.Here,This paper reports a 2D(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single crystal with outstanding sensitivity and stability toward X-ray radiation that provides an ultra-wide detectable X-ray range of between 8.20 nGy_(air)s^(-1)(50 keV)and 15.24 mGy_(air)s^(-1)(9 MeV).The(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single-crystal detector with a vertical structure is used for high-performance X-ray imaging,delivering a good spatial resolution of 4.3 Ip mm^(-1)in a plane-scan imaging system.Low ionic migration in the 2D perovskite enables the vertical device to be operated with hundreds of keV to MeV X-ray radiation at high bias voltages,leading to a sensitivity of 46.90μC Gy_(air)-1 cm^(-2)(-1.16 Vμm^(-1))with 9 MeV X-ray radiation,demonstrating that 2D perovskites have enormous potential for high-energy industrial applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172211 and 41630633)the National Key Research and Development Project of China(Grant No.2019YFC1509800).
文摘In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress.
基金the National Natural Science Foundation of China(NSFC)(Grant No.12074126)the Foundation for Innovative Research Groups of NSFC(Grant No.51621001)the Fundamental Research Funds for the Central Universities(Grant No.2020ZYGXZR076).
文摘Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of monolayer group-IV monochalcogenides MX(M=Sn,Ge;X=Se,Te,S)via strain engineering,and their effects with contaminated hydrogen are also discussed.GeSe,GeTe,and GeS do not go through transition up to the compressive strain of-5%,and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain.According to the calculated ferroelectric properties and the band gaps of these materials,we find that their band gap can be adjusted by strain for excellent photovoltaic applications.In addition,we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe.It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H.As a result,hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS.
文摘This study evaluated the change in regional left ventricular myocardial function in rats following acute occlusion of the left anterior descending coronary artery (LAD) by using two-dimensional speckle tracking imaging (2D-STI). Sixty Wistar rats were randomly divided into two groups, a myocardial infarction (MI) group, in which 50 rats were subjected to LAD occlusion for 30–45 min, and a sham-operated (SHAM) group that contained 10 rats serving as control. Echo-cardiography was performed at baseline and 1, 4 and 8 week(s) after the operation. High frequency two-dimensional images of left ventricular short axis at papillary muscle level were recorded. Peak systolic radial strain (PRS) and circumferential strain (PCS) were measured in the mid-ventricle in short-axis view by using EchoPAC workstation. Left ventricular internal diameter at diastole (LVIDd) and systole (LVIDs), fractional shortening (FS), ejection fraction (EF) and left ventricular mass (LVM) were measured by anatomical M-model echocardiography. Infarct size was measured using triphenyl tetrazolium chloride (TTC) staining 1 week and 8 weeks after the operation. Fibrosis of left ventricu-lar myocardium was displayed using Van Gieson staining 1 week after the infarction. In terms of the TTC staining results, the left ventricle fell into three categories: infarcted, peri-infarcted and remote myocardial regions. Compared with those at baseline and in the SHAM group, (1) PRS and PCS in the infarcted, peri-infarcted and remote myocardial regions were significantly decreased in the MI group within 1 week after the operation (P〈0.05) and the low levels lasted 8 weeks; (2) Compared with those at baseline, LVIDd, LVIDs, FS, EF and LVM in the MI group showed no significant dif-ference 1 week after the operation (P〉0.05). However, LVIDd, LVIDs and LVM were increased sig-nificantly 4 and 8 weeks after the operation (P〈0.05), and FS and EF were decreased substantially (P〈0.05). Van Gieson staining showed that fibrosis developed in all the three myocardial regions to varying degrees. It is concluded that 2D-STI is non-invasive and can be used to assess regional func-tion of myocardium with different blood supply in rats following acute occlusion of the LAD, and can be used as a sensitive and reliable means to follow up the process of left ventricular remodeling.
文摘Background Identifying the transmural extent of myocardial necrosis and the degree of myocardial viability in acute myocardial infarction (AMI) is important clinically. The aim of this study was to assess myocardial viability using two-dimensional speckle tracking imaging (2D-STI) in patients with AMI. Methods 2D-STI was performed at initial presentation, three days, and six months after primary percutaneous coronary intervention (PCI) in 30 patients with AMI, who had a left anterior descending coronary artery (LAD) culprit lesion. In addition, 20 patients who had minimal stenotic lesions (〈 30% stenosis) on coronary angiography were also included in the control group. At six months dobutamine echocardiography was performed for viability assessment in seven segments of the LAD territory. According to the recovery of wall motion abnormality, segments were classified as viable or non-viable. Results A total of 131 segments were viable, and 44 were nonviable. Multivariate analysis revealed significant differences between the viable and nonviable segments in the peak systolic strain, the peak systolic strain rate at initial presentation, and peak systolic strain rate three days after primary PCI. Among these, the initial peak systolic strain rate had the highest predictive value for myocardial viability (hazard ratio: 31.22, P 〈 0.01). Conclusions 2D-STI is feasible for assessing myocardial viability, and the peak systolic strain rate might be the most reliable predictor of myocardial viability in patients with AMI.
基金supported by the National Natural Science Foundation of China(Grant Nos.11204117,11304007,and 60907031)the China Postdoctoral Science Foundation(Grant No.2013M540146)+1 种基金the Fund from the Education Department of Liaoning Province,China(Grant No.L2012001)the National HiTech Research and Development Program of China(Grant No.2013AA122902)
文摘We report an experimental demonstration of two-dimensional(2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before is employed as a light source. The main problem encountered by the 2D lensless ghost imaging with true thermal light is that its coherence time is much shorter than the resolution time of the detection system. To overcome this difficulty we derive a method based on the relationship between the true and measured values of the second-order optical intensity correlation, by which means the visibility of the ghost image can be dramatically enhanced. This method would also be suitable for ghost imaging with natural sunlight.
文摘Objective: To research the clinical application of two-dimensional speckle tracking imaging (2D-STI) in quantitative assessment of left ventricular function in patients with obstructive sleep apnea-hypopnea syndrome (OSAS). Method: From July 2016 to December 2018, 86 patients with OSAS were selected as OSAS group. According to sleep apnea hypopnea index (AHI), they were divided into mild OSAS group (24 cases), moderate OSAS group (29 cases) and severe OSAS group (33 cases). Another 50 healthy volunteers who underwent physical examination in our hospital during the same period were selected as the control group. The left ventricular function of all patients was quantitatively assessed by 2D-STI. The left ventricular function of all patients was quantitatively assessed by 2D-STI. The results of routine echocardiography and left ventricular global strain parameters of the OSAS group, the control group and the OSAS patients with different severity were compared and analyzed. Result: There were no significant differences in the levels of left ventricular ejection fraction (LVEF), left ventricular end diastolic diameter (LVEDd), left ventricular end systolic diameter (LVESd) between the two groups and OSAS patients with different severity (P>0.05). The levels of IVST, LVPW and LVMI in the OSAS group were significantly higher than those in the control group, the levels of end-diastolic interventricular septal thickness (IVS), left ventricular posterior wall thickness (LVPW), left ventricular mass index (LVMI) in the severe OSAS group were significantly higher than those in the mild and moderate OSAS group, and the levels of IVST, LVPW and LVMI in the moderate OSAS group were significantly higher than those in the mild OSAS group, there were significant differences between groups (P<0.05). The levels of GLS, GRS and GCS in the OSAS group were significantly lower than those in the control group (P<0.05). GLS, GRS and GCS levels in the severe OSAS group were significantly lower than those in the mild OSAS group and the moderate OSAS group, while the levels of global longitudinal strain (GLS), global radial strain (GRS) and global circumferential strain (GCS) in the moderate OSAS group were significantly lower than those in the mild OSAS group (P<0.05). Conclusion: The left ventricular systolic function of OSAS patients is obviously impaired. Left ventricular function in OSAS patients can be assessed timely and accurately by two-dimensional speckle tracking imaging.
文摘The clinically applied value of myocardial perfusion and systolic function in patients with coronary artery disease after coronary artery bypass surgery using real-time myocardial contrast echocardiography (RT-MCE) combined with two-dimensional strain echocardiography was assessed. Twenty patients underwent intravenous RT-MCE by intravenous injections of SonoVue before and after coronary artery bypass surgery. Two-dimensional images were recorded from the left ventricular four-chamber view, two-chamber view and the apical view before, and two weeks and three months after coronary artery bypass surgery, and the peak systolic longitudinal strain was measured. The results showed that myocardial perfusion was significantly increased after coronary artery bypass surgery in about 71.6% segments. In the group that myocardial perfusion was improved, the peak systolic longitu- dinal strain three months after bypass surgery was significantly higher than that before operation [(-15.78±5.91)% vs (-10.45±8.31)%, P〈0.05]. However, the parameters did not change in the group without myocardial perfusion improvement [(-10.33±6.53)% vs (-9.41±6.09)%, P〉0.05]. It was concluded that whether or not the improvement of myocardial perfusion can mirror the recovery trend of regional systolic function, two-dimensional strain echocardiography can observe dynamic change of regional systolic function. The combination of myocardial perfusion with two-dimensional strain echocardiography can more accurately assess the curative effectiveness of coronary artery bypass surgery.
文摘The value of tissue strain imaging (SI) in regional myocardial systolic and diastolic func tion assessment was studied. In 18 patients with nonobstructive hypertrophic cardiomyopathy (HCM) and 20 age-matched healthy subjects, regional myocardial longitudinal peak systolic strain in eject time (represented by εet) was measured at basal, mid and apical segments of septal, lateral and posterior walls of the left ventricle (LV) and compared between groups, εet had no significant difference between segments in control group (P〉0.05), which displayed a decreasing trend from basal segments to apical ones. εet in the HCM group was significantly decreased (P(0. 05) as compared with that in the healthy group. In the HCM group, εet in the midseptum was significantly less than at the basal and apical septum, and was also less than at the rest LV walls in the same group (P〉0.01). The systolic reversed εet was noticed in 35% of the hypertrophic segments in HCM group. Significantly negative correlation existed between the absolute value of εet and wall thickness in the midseptum (r= -0.83). The post-systolic strain(PSS) segment number the and amplitudes in healthy group were significantly less than those in HCM group (P〈0.05). Both regional myocardial systolic and diastolic functions were impaired in hypertrophic or non-hypertrophic segments in patients with the HCM, especially in hypertrophic segments. Strain imaging technique is a sensitive and accura tool in myocardial dysfunction assessment.
文摘The value of two-dimensional strain echocardiography for assessing left ventricular regional systolic function in breast cancer patients who were treated with epirubicin was evaluated. A total of 116 breast cancer patients were divided into 3 groups: Thirty-eight patients in group A were given epirubicin (Epi) of 120-340 mg/m^2, 42 patients in group B received epimbicin of≥ 360 mg/m^2, and 36 patients after surging without chemotherapy served as the control group C. High frame rate two-dimensional images were recorded from apical long-axis view, four-chamber view, two-chamber view of left ventricle. Peak systolic strain of left ventricular subendocardial myocardium was measured using two-dimensional strain software. The conventional echocardiographic parameters were also obtained. Conventional echocardiography showed there was no significant changes in conventional echocardiographic parameters among the three groups (P〉0.05). Two-dimensional strain echocardiography revealed that the peak systolic strain of left ventricular subendocardial myocardium in group A was reduced in some segments as compared with the controls (P〈0.05). The peak systolic strain of left ventricular subendocardial myocardium in group B was reduced significantly as com- pared with group C (P〈0.05), but that was reduced in group B just in some of the segments as compared with group A (P〈0.05). It was concluded that two-dimensional strain echocardiography could early and sensitively display the effects of epirubicin-induced cardiotoxicity on the systolic function of left ventricular subendocardial myocardium, and early monitor the epirubicin-induced cardiotoxicity.
基金Project(06JJ50110) supported by the Natural Science Foundation of Hunan Province, China
文摘To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.
文摘To assess the left ventricular longitudinal regional myocardial systolic function by strain imaging (SI) echocardiography and to study the relationship between regional myocardial systolic function and left ventricular structure in patients with hypertrophic cardiomyopathy (HCM). S1 echocardiography were performed in 18 patients with HCM and 17 healthy subjects. For each wall, regional myocardial systolic strain was analyzed at the basal, mid, and apical level respectively. And the peak systolic strain was measured. Our results showed that the patients with HCM had reduced peak systolic strain at almost each segment of different walls when compared with healthy subjects. There was significant correlation between the mid-septum peak systolic strain and the thickness of IVS, so was the correlation between the mid-septum peak systolic strain and the IVS to LVPW thickness ratio. This study demonstrated that the left ventricular longitudinal regional myocardial systolic function was abnormal in HCM, and this kind of abnormalities existed extensively in hypertrophic and non-hypertrophic cardiac segments. The degrees of left ventricle hypertrophy and asymmetry are related to the myocardial regional systolic function in HCM.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20190736)the Young Scientists Fund of the National Natural Science Foundation of China(Grant Nos.81701346 and 61603198)Qinglan Team of Universities in Jiangsu Province(Jiangsu Teacher Letter[2020]10 and Jiangsu Teacher Letter[2021]11).
文摘Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging.Currently,most structural magnetic resonance imaging literature explores brain aging merely from the perspective of morphological features,which cannot fully utilize the grayscale values containing important intrinsic information about brain structure.In this study,we propose the construction of two-dimensional horizontal visibility graphs based on the pixel intensity values of the gray matter slices directly.Normalized network structure entropy(NNSE)is then introduced to quantify the overall heterogeneities of these graphs.The results demonstrate a decrease in the NNSEs of gray matter with age.Compared with the middle-aged and the elderly,the larger values of the NNSE in the younger group may indicate more homogeneous network structures,smaller differences in importance between nodes and thus a more powerful ability to tolerate intrusion.In addition,the hub nodes of different adult age groups are primarily located in the precuneus,cingulate gyrus,superior temporal gyrus,inferior temporal gyrus,parahippocampal gyrus,insula,precentral gyrus and postcentral gyrus.Our study can provide a new perspective for understanding and exploring the structural mechanism of brain aging.
文摘AIM:To compare the acute changes in circumferential and longitudinal strain after exposing a coronary artery to various interventions in swine.METHODS:Percutaneous balloon angioplasty catheter was guided to location aid device(LAD)under X-ray fluoroscopy to create different patterns of ischemic insults.Pigs(n=32)were equally divided into 4 groups:controls,90 min LAD occlusion/reperfusion,LAD microembolization,and combined LAD occlusion/microembolization/reperfusion.Three days after interventions,cine,tagged and viability magnetic resonance imaging(MRI)were acquired to measure and compare left and right circumferential strain,longitudinal strain and myocardial viability,respectively.Measurements were obtained using HARP and semi-automated threshold method and statistically analyzed using unpaired t-test.Myocardial and vascular damage was characterized microscopically.RESULTS:Coronary microemboli caused greater impairment in l left ventricular(LV)circumferential strain and dyssynchrony than LAD occlusion/reperfusion despite the significant difference in the extent of myocardial damage.Microemboli also caused significant decrease in peak systolic strain rate of remote myocardium and LV dyssynchrony.Cine MRI demonstrated the interaction between LV and right ventricular(RV)at 3 d after interventions.Compensatory increase in RV free wall longitudinal strain was seen in response to all interventions.Viability MRI,histochemical staining and microscopy revealed different patterns of myocardial damage and microvascular obstruction.CONCLUSION:Cine MRI revealed subtle changes in LV strain caused by various ischemic insults.It also demonstrated the interaction between the right and left ventricles after coronary interventions.Coronary microemboli with and without acute myocardial infarction(AMI)cause complex myocardial injury and ventricular dysfunction that is not replicated in solely AMI.
基金Supported by the National Key Research and Development Program of China (Grant No.2016YFA0302001)the National Natural Science Foundation of China (Grant Nos.11774224,12074244,11521404,and 61701394)+1 种基金support from the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningadditional support from a Shanghai talent program。
文摘Detection of local strain at the nanometer scale with high sensitivity remains challenging.Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phonon frequency.As a non-polar crystal,intrinsic bilayer graphene possesses little infrared response at its transverse optical phonon frequency.The reported optical detection of local strain is enabled by applying a vertical electrical field that breaks the symmetry of the two graphene layers and introduces finite electrical dipole moment to graphene phonon.The activated phonon further interacts with continuum electronic transitions,and generates a strong Fano resonance.The resulted Fano resonance features a very sharp near-field infrared scattering peak,which leads to an extraordinary sensitivity of-0.002%for the strain detection.Our results demonstrate the first nano-scale near-field Fano resonance,provide a new way to probe local strains with high sensitivity in non-polar crystals,and open exciting possibilities for studying strain-induced rich phenomena.
基金Science and Technology Plan of Gansu Province(No.144NKCA040)
文摘In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61072147 and 11271008)
文摘We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.
基金Project support by the National Natural Science Foundation of China(Grant Nos.11704044 and 12074140)。
文摘The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.
基金financially supported by the National Natural Science Foundation of China (NSFC)(Nos.22175007 and 21975007)the National Natural Science Foundation for Outstanding Youth Foundation+1 种基金the Fundamental Research Funds for the Central Universities (No.YWF-22-K-101)the National Program for Support of Top-notch Young Professionals and the 111project (Nos.B14009)。
文摘The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging detection, the scintillator has been plagued by inherent moisture absorption and decomposition, and strict requirements for seamless packaging and waterproofing.Here, we designed a manganese-doped two-dimensional(2D) perovskite scintillator modified by hydrophobic longchain organic amine through the combination of component and doping engineering. The modified perovskites show high water repellency that can be used as an underwater X-ray scintillator. X-ray images of aquatic organisms or other objects with a high spatial resolution of10 lp·mm^(-1) at a big view field(32 mm × 32 mm) were obtained by scintillation screen. This hydrophobic perovskite scintillator based on molecular design is of great promise in underwater X-ray nondestructive testing technology development.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62105004 and 52174141)the College Student Innovation and Entrepreneurship Fund Project(Grant No.202210361053)+1 种基金Anhui Mining Machinery and Electrical Equipment Coordination Innovation Center,Anhui University of Science&Technology(Grant No.KSJD202304)the Anhui Province Digital Agricultural Engineering Technology Research Center Open Project(Grant No.AHSZNYGC-ZXKF021)。
文摘A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.