Skin imaging technologies such as dermoscopy, high-frequency ultrasound, reflective confocal microscopy and optical coherence tomography are developing rapidly in clinical application. Skin imaging technology can impr...Skin imaging technologies such as dermoscopy, high-frequency ultrasound, reflective confocal microscopy and optical coherence tomography are developing rapidly in clinical application. Skin imaging technology can improve clinical diagnosis rate, and its non-invasiveness and repeatability make it occupy an irreplaceable position in clinical diagnosis. With the “booming development” of medical technology, skin imaging technology can improve clinical diagnosis rate. Researchers have made significant advances in assisting clinical diagnosis, prediction, and treatment of disease. This article reviews the application and progress of skin imaging in the diagnosis of psoriasis.展开更多
The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging...The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging detection, the scintillator has been plagued by inherent moisture absorption and decomposition, and strict requirements for seamless packaging and waterproofing.Here, we designed a manganese-doped two-dimensional(2D) perovskite scintillator modified by hydrophobic longchain organic amine through the combination of component and doping engineering. The modified perovskites show high water repellency that can be used as an underwater X-ray scintillator. X-ray images of aquatic organisms or other objects with a high spatial resolution of10 lp·mm^(-1) at a big view field(32 mm × 32 mm) were obtained by scintillation screen. This hydrophobic perovskite scintillator based on molecular design is of great promise in underwater X-ray nondestructive testing technology development.展开更多
This paper briefly introduces the characteristics and structure of symbol QR two-dimensional code, a detailed analysis of the image processing method to identify QR code of the whole process, and the bilinear mapping ...This paper briefly introduces the characteristics and structure of symbol QR two-dimensional code, a detailed analysis of the image processing method to identify QR code of the whole process, and the bilinear mapping method is applied to image correction, the final steps of decoding are given. The actual test results show that, the design algorithm has theoretical and practical, this recognition system can correctly read QR code, and has high recognition rate and recognition speed, has practical value and application prospect.展开更多
Signal to noise ratio in ultrasound medical images captured through the digital camera is poorer,resulting in an inaccurate diagnosis.As a result,it needs an efficient despeckling method for ultrasound images in clinic...Signal to noise ratio in ultrasound medical images captured through the digital camera is poorer,resulting in an inaccurate diagnosis.As a result,it needs an efficient despeckling method for ultrasound images in clinical practice and tel-emedicine.This article proposes a novel adaptive fuzzyfilter based on the direc-tionality and translation invariant property of the Non-Sub sampled Contour-let Transform(NSCT).Since speckle-noise causes fuzziness in ultrasound images,fuzzy logic may be a straightforward technique to derive the output from the noisy images.Thisfiltering method comprises detection andfiltering stages.First,image regions classify at the detection stage by applying fuzzy inference to the directional difference obtained from the NSCT noisy image.Then,the system adaptively selects the better-suitedfilter for the specific image region,resulting in significant speckle noise suppression and retention of detailed features.The suggested approach uses a weighted averagefilter to distinguish between noise and edges at thefiltering stage.In addition,we apply a structural similarity mea-sure as a tuning parameter depending on the kind of noise in the ultrasound pic-tures.The proposed methodology shows that the proposed fuzzy adaptivefilter effectively suppresses speckle noise while preserving edges and image detailed structures compared to existing approaches.展开更多
文摘Skin imaging technologies such as dermoscopy, high-frequency ultrasound, reflective confocal microscopy and optical coherence tomography are developing rapidly in clinical application. Skin imaging technology can improve clinical diagnosis rate, and its non-invasiveness and repeatability make it occupy an irreplaceable position in clinical diagnosis. With the “booming development” of medical technology, skin imaging technology can improve clinical diagnosis rate. Researchers have made significant advances in assisting clinical diagnosis, prediction, and treatment of disease. This article reviews the application and progress of skin imaging in the diagnosis of psoriasis.
基金financially supported by the National Natural Science Foundation of China (NSFC)(Nos.22175007 and 21975007)the National Natural Science Foundation for Outstanding Youth Foundation+1 种基金the Fundamental Research Funds for the Central Universities (No.YWF-22-K-101)the National Program for Support of Top-notch Young Professionals and the 111project (Nos.B14009)。
文摘The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging detection, the scintillator has been plagued by inherent moisture absorption and decomposition, and strict requirements for seamless packaging and waterproofing.Here, we designed a manganese-doped two-dimensional(2D) perovskite scintillator modified by hydrophobic longchain organic amine through the combination of component and doping engineering. The modified perovskites show high water repellency that can be used as an underwater X-ray scintillator. X-ray images of aquatic organisms or other objects with a high spatial resolution of10 lp·mm^(-1) at a big view field(32 mm × 32 mm) were obtained by scintillation screen. This hydrophobic perovskite scintillator based on molecular design is of great promise in underwater X-ray nondestructive testing technology development.
文摘This paper briefly introduces the characteristics and structure of symbol QR two-dimensional code, a detailed analysis of the image processing method to identify QR code of the whole process, and the bilinear mapping method is applied to image correction, the final steps of decoding are given. The actual test results show that, the design algorithm has theoretical and practical, this recognition system can correctly read QR code, and has high recognition rate and recognition speed, has practical value and application prospect.
文摘Signal to noise ratio in ultrasound medical images captured through the digital camera is poorer,resulting in an inaccurate diagnosis.As a result,it needs an efficient despeckling method for ultrasound images in clinical practice and tel-emedicine.This article proposes a novel adaptive fuzzyfilter based on the direc-tionality and translation invariant property of the Non-Sub sampled Contour-let Transform(NSCT).Since speckle-noise causes fuzziness in ultrasound images,fuzzy logic may be a straightforward technique to derive the output from the noisy images.Thisfiltering method comprises detection andfiltering stages.First,image regions classify at the detection stage by applying fuzzy inference to the directional difference obtained from the NSCT noisy image.Then,the system adaptively selects the better-suitedfilter for the specific image region,resulting in significant speckle noise suppression and retention of detailed features.The suggested approach uses a weighted averagefilter to distinguish between noise and edges at thefiltering stage.In addition,we apply a structural similarity mea-sure as a tuning parameter depending on the kind of noise in the ultrasound pic-tures.The proposed methodology shows that the proposed fuzzy adaptivefilter effectively suppresses speckle noise while preserving edges and image detailed structures compared to existing approaches.