All-atom molecular simulations and two-dimensional nuclear overhauser effect spectrum have been used to study the conformations of carnosine in aqueous solution. Intramolecular distances, root-mean-square deviation, r...All-atom molecular simulations and two-dimensional nuclear overhauser effect spectrum have been used to study the conformations of carnosine in aqueous solution. Intramolecular distances, root-mean-square deviation, radius of gyration, and solvent-accessible surface are used to characterize the properties of the carnosine. Carnosine can shift between extended and folded states, but exists mostly in extended state in water. Its preference for extension in pure water has been proven by the 2D nuclear magnetic resonance (NMR) experiment. The NMR experimental results are consistent with the molecular dynamics simulations.展开更多
文摘All-atom molecular simulations and two-dimensional nuclear overhauser effect spectrum have been used to study the conformations of carnosine in aqueous solution. Intramolecular distances, root-mean-square deviation, radius of gyration, and solvent-accessible surface are used to characterize the properties of the carnosine. Carnosine can shift between extended and folded states, but exists mostly in extended state in water. Its preference for extension in pure water has been proven by the 2D nuclear magnetic resonance (NMR) experiment. The NMR experimental results are consistent with the molecular dynamics simulations.