This paper reports on the design,fabrication,RF measurement,and high-power test of a prototype accelerator—such as 11.424 GHz with 12 cells—and a traveling wave of two halves.It was found that the unloaded gradient ...This paper reports on the design,fabrication,RF measurement,and high-power test of a prototype accelerator—such as 11.424 GHz with 12 cells—and a traveling wave of two halves.It was found that the unloaded gradient reached 103 MV/m during the high-power test and the measured breakdown rate,after 3.17×10^(7) pulses,was 1.62×10^(-4)/pulse/m at 94 MV/m and a 90 ns pulse length.We thus concluded that the high-gradient two-half linear accelerator is cost-effective,especially in high-frequency RF linear acceleration.Finally,we suggest that silverbased alloy brazing can further reduce costs.展开更多
在机电耦合系统中,常会附加半自由度的方程。为了求解与这类方程有关的强非线性振动系统,在单自由度复动频率法的基础上引入新的平衡规则,使其可应用于一个半自由度系统,得到Duffing振子强迫振动的渐近解和幅频响应关系。为进一步拓展...在机电耦合系统中,常会附加半自由度的方程。为了求解与这类方程有关的强非线性振动系统,在单自由度复动频率法的基础上引入新的平衡规则,使其可应用于一个半自由度系统,得到Duffing振子强迫振动的渐近解和幅频响应关系。为进一步拓展该方法的使用范围,通过增加新的待定频率和动态频率,使复动频率法可用于分析两自由度强非线性振动系统,据此得到两自由度Duffing‑Van der Pol振子的渐近解。通过与多尺度法、数值解结果对比,证明了使用复动频率法研究多自由度强非线性振动问题的有效性。展开更多
基金supported by the National Natural Science Foundation of China(No.11922504)。
文摘This paper reports on the design,fabrication,RF measurement,and high-power test of a prototype accelerator—such as 11.424 GHz with 12 cells—and a traveling wave of two halves.It was found that the unloaded gradient reached 103 MV/m during the high-power test and the measured breakdown rate,after 3.17×10^(7) pulses,was 1.62×10^(-4)/pulse/m at 94 MV/m and a 90 ns pulse length.We thus concluded that the high-gradient two-half linear accelerator is cost-effective,especially in high-frequency RF linear acceleration.Finally,we suggest that silverbased alloy brazing can further reduce costs.
文摘在机电耦合系统中,常会附加半自由度的方程。为了求解与这类方程有关的强非线性振动系统,在单自由度复动频率法的基础上引入新的平衡规则,使其可应用于一个半自由度系统,得到Duffing振子强迫振动的渐近解和幅频响应关系。为进一步拓展该方法的使用范围,通过增加新的待定频率和动态频率,使复动频率法可用于分析两自由度强非线性振动系统,据此得到两自由度Duffing‑Van der Pol振子的渐近解。通过与多尺度法、数值解结果对比,证明了使用复动频率法研究多自由度强非线性振动问题的有效性。