A two-stage oxidation—alkali leaching—acid leaching method was proposed to recovery Fe,V,and Ti in modified Ti-bearing blast furnace slag.The optimal experiment conditions of iron extraction were one-stage oxidation...A two-stage oxidation—alkali leaching—acid leaching method was proposed to recovery Fe,V,and Ti in modified Ti-bearing blast furnace slag.The optimal experiment conditions of iron extraction were one-stage oxidation time 40 s and holding time 8 min.The recovery rate of iron was 89.93%.The optimum experiment conditions of vanadium extraction were total oxidation time of 126 s,NaOH concentration of 4.0 mol/L,leaching temperature of 95℃,leaching time of 90 min,and the number of cycle was 4.The leaching rate of vanadium was 92.13%.The optimal experiment conditions of titanium extraction were HCl concentration of 4.5 mol/L,leaching temperature of 75℃,and leaching time of 90 min.The TiO_(2)content of synthetic rutile was 98.61%.展开更多
对 L F合成渣脱硫、脱氧技术理论和埋弧精炼基本方法进行了分析。介绍了宝钢 30 0 t L F脱硫合成渣、脱氧合成渣和埋弧精炼技术的开发过程及应用效果。采用所开发的上述技术 ,能够批量生产 [S]≤ 10× 10 - 6的超低硫钢和 T [O]≤ 1...对 L F合成渣脱硫、脱氧技术理论和埋弧精炼基本方法进行了分析。介绍了宝钢 30 0 t L F脱硫合成渣、脱氧合成渣和埋弧精炼技术的开发过程及应用效果。采用所开发的上述技术 ,能够批量生产 [S]≤ 10× 10 - 6的超低硫钢和 T [O]≤ 15× 10 - 6的低氧钢 ,并实现了 L F全程埋弧精炼。展开更多
基金financial support from the National Science and Technology Support Program of China(No.2015BAB18B00)。
文摘A two-stage oxidation—alkali leaching—acid leaching method was proposed to recovery Fe,V,and Ti in modified Ti-bearing blast furnace slag.The optimal experiment conditions of iron extraction were one-stage oxidation time 40 s and holding time 8 min.The recovery rate of iron was 89.93%.The optimum experiment conditions of vanadium extraction were total oxidation time of 126 s,NaOH concentration of 4.0 mol/L,leaching temperature of 95℃,leaching time of 90 min,and the number of cycle was 4.The leaching rate of vanadium was 92.13%.The optimal experiment conditions of titanium extraction were HCl concentration of 4.5 mol/L,leaching temperature of 75℃,and leaching time of 90 min.The TiO_(2)content of synthetic rutile was 98.61%.
文摘对 L F合成渣脱硫、脱氧技术理论和埋弧精炼基本方法进行了分析。介绍了宝钢 30 0 t L F脱硫合成渣、脱氧合成渣和埋弧精炼技术的开发过程及应用效果。采用所开发的上述技术 ,能够批量生产 [S]≤ 10× 10 - 6的超低硫钢和 T [O]≤ 15× 10 - 6的低氧钢 ,并实现了 L F全程埋弧精炼。