In this study examined is the wave interaction with a new modified perforated breakwater, consisting of a perforated front wall, a solid back wall and a wave absorbing chamber between them with a two-layer rock-filled...In this study examined is the wave interaction with a new modified perforated breakwater, consisting of a perforated front wall, a solid back wall and a wave absorbing chamber between them with a two-layer rock-filled core. The fluid domain is divided into three sub-domains according to the components of the breakwater. Then by means of the matched eigenfunction expansion method, an analytical solution is obtained to assess the hydrodynamic performance of the new structure. An approach based on a step approach method is introduced to solve the complex dispersion equations for water wave motions within two-layer porous media. Numerical results of the present model are compared with previous limiting cases. The effects of rock fill on the reflec- tion coefficient and the horizontal wave force are discussed.展开更多
基金The project supported by the Program for Changjiang ScholarsInnovative Research Teams in Universities(IRT0420)
文摘In this study examined is the wave interaction with a new modified perforated breakwater, consisting of a perforated front wall, a solid back wall and a wave absorbing chamber between them with a two-layer rock-filled core. The fluid domain is divided into three sub-domains according to the components of the breakwater. Then by means of the matched eigenfunction expansion method, an analytical solution is obtained to assess the hydrodynamic performance of the new structure. An approach based on a step approach method is introduced to solve the complex dispersion equations for water wave motions within two-layer porous media. Numerical results of the present model are compared with previous limiting cases. The effects of rock fill on the reflec- tion coefficient and the horizontal wave force are discussed.