In this study,a new method is presented to correlate the shear viscosity of nanofluids by local composition theory.The Eyring theory and nonrandom two-liquid(NRTL)equation are used for this purpose.The effects of temp...In this study,a new method is presented to correlate the shear viscosity of nanofluids by local composition theory.The Eyring theory and nonrandom two-liquid(NRTL)equation are used for this purpose.The effects of temperature and particle volume concentration on the viscosity are investigated.The adjustable parameters of NRTL equation are obtained by fitting with experimental data.The calculated shear viscosities for nanofluids of CuO/water with 29 nm particle size,Al2O3/water with two different particle diameters,36 nm and 47 nm,and CuO/(ethylene glycol,water)are compared with experimental data and the average absolute deviation(AAD)is 1.2%,while the results from some conventional models yield an AAD of 190%.The results of this study are in excellent agreement with experimental data.展开更多
The multilayer microchannel flow is a promising tool in microchannel-based systems such as hybrid microfluidics. To assist in the efficient design of two-liquid pumping system, a two-fluid electroosmotic flow of immis...The multilayer microchannel flow is a promising tool in microchannel-based systems such as hybrid microfluidics. To assist in the efficient design of two-liquid pumping system, a two-fluid electroosmotic flow of immiscible power-law fluids through a microtube is studied with consideration of zeta potential difference near the two-liquid interface. The modified Cauchy momentum equation in cylindrical coordinate governing the two-liquid velocity distributions is solved where both peripheral and inner liquids are represented by power-law model. The two-fluid velocity distribution under the combined interaction of power-law rheological effect and circular wall effect is evaluated at different viscosities and different electroosmotic characters of inner and peripheral power-law fluids. The velocity of inner flow is a function of the viscosities, electric properties and electroosmotic characters of two power-law fluids, while the peripheral flow is majorly influenced by the viscosity, electric property and electroosmotic characters of peripheral fluid. Irrespective of the configuration manner of power-law fluids, the shear thinning fluid is more sensitive to the change of other parameters.展开更多
The Shielding coefficient of superconductor in the shape of the spherical shell is derived on the basis of Maxwell's equations and London's two-liquid model. Some cases of superconductor shielding have also ...The Shielding coefficient of superconductor in the shape of the spherical shell is derived on the basis of Maxwell's equations and London's two-liquid model. Some cases of superconductor shielding have also been discussed in this paper.展开更多
文摘In this study,a new method is presented to correlate the shear viscosity of nanofluids by local composition theory.The Eyring theory and nonrandom two-liquid(NRTL)equation are used for this purpose.The effects of temperature and particle volume concentration on the viscosity are investigated.The adjustable parameters of NRTL equation are obtained by fitting with experimental data.The calculated shear viscosities for nanofluids of CuO/water with 29 nm particle size,Al2O3/water with two different particle diameters,36 nm and 47 nm,and CuO/(ethylene glycol,water)are compared with experimental data and the average absolute deviation(AAD)is 1.2%,while the results from some conventional models yield an AAD of 190%.The results of this study are in excellent agreement with experimental data.
文摘The multilayer microchannel flow is a promising tool in microchannel-based systems such as hybrid microfluidics. To assist in the efficient design of two-liquid pumping system, a two-fluid electroosmotic flow of immiscible power-law fluids through a microtube is studied with consideration of zeta potential difference near the two-liquid interface. The modified Cauchy momentum equation in cylindrical coordinate governing the two-liquid velocity distributions is solved where both peripheral and inner liquids are represented by power-law model. The two-fluid velocity distribution under the combined interaction of power-law rheological effect and circular wall effect is evaluated at different viscosities and different electroosmotic characters of inner and peripheral power-law fluids. The velocity of inner flow is a function of the viscosities, electric properties and electroosmotic characters of two power-law fluids, while the peripheral flow is majorly influenced by the viscosity, electric property and electroosmotic characters of peripheral fluid. Irrespective of the configuration manner of power-law fluids, the shear thinning fluid is more sensitive to the change of other parameters.
文摘The Shielding coefficient of superconductor in the shape of the spherical shell is derived on the basis of Maxwell's equations and London's two-liquid model. Some cases of superconductor shielding have also been discussed in this paper.