Herein we present a new perspective showing that water-soluble liquids,when added to water,undergo transient emulsification before complete dissolution.Thus,non-amphiphilic macromolecules can self-assemble at the two-...Herein we present a new perspective showing that water-soluble liquids,when added to water,undergo transient emulsification before complete dissolution.Thus,non-amphiphilic macromolecules can self-assemble at the two-miscible-phase interface when cononsolvent effect appears.A representative case shown here is that when poly(A/-isopropylacrylamide)(PNIPAm),prepared by aqueous radical polymerization,in methanol solution is added into water,the polymer chains rapidly self-assemble into hollow micro-vesicles based on the cononsolvency at water/methanol interface.This finding provides a subtle strategy to prepare hollow micro-vesicles by non-amphiphilic polymers without template participating.We proposed a new concept^interfacial cononsolvencyw to describe the formation process.Due to the easy modification process,sugar-contained PNIPAm chains are synthesized by copolymerization.As an application example,it is shown that these sugar-contained PNIPAm chains can afford MsweetH micro-vesicles(containing glucose residues).And the"sweer"micro-vesicles can well mimick the protocells which are involved in the recognition of bacteria.展开更多
基金the National Natural Science Foundation of China(Nos.21905192,21935008 and 21674074)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and China Postdoctoral Science Foundation(No.2019M661925).
文摘Herein we present a new perspective showing that water-soluble liquids,when added to water,undergo transient emulsification before complete dissolution.Thus,non-amphiphilic macromolecules can self-assemble at the two-miscible-phase interface when cononsolvent effect appears.A representative case shown here is that when poly(A/-isopropylacrylamide)(PNIPAm),prepared by aqueous radical polymerization,in methanol solution is added into water,the polymer chains rapidly self-assemble into hollow micro-vesicles based on the cononsolvency at water/methanol interface.This finding provides a subtle strategy to prepare hollow micro-vesicles by non-amphiphilic polymers without template participating.We proposed a new concept^interfacial cononsolvencyw to describe the formation process.Due to the easy modification process,sugar-contained PNIPAm chains are synthesized by copolymerization.As an application example,it is shown that these sugar-contained PNIPAm chains can afford MsweetH micro-vesicles(containing glucose residues).And the"sweer"micro-vesicles can well mimick the protocells which are involved in the recognition of bacteria.