We investigate the two-mode quantum Rabi model(QRM)describing the interaction between a two-level atom and a two-mode cavity field.The quantum phase transitions are found when the ratioηof transition frequency of ato...We investigate the two-mode quantum Rabi model(QRM)describing the interaction between a two-level atom and a two-mode cavity field.The quantum phase transitions are found when the ratioηof transition frequency of atom to frequency of cavity field approaches infinity.We apply the Schrieffer–Wolff(SW)transformation to derive the low-energy effective Hamiltonian of the two-mode QRM,thus yielding the critical point and rich phase diagram of quantum phase transitions.The phase diagram consists of four regions:a normal phase,an electric superradiant phase,a magnetic superradiant phase and an electromagnetic superradiant phase.The quantum phase transition between the normal phase and the electric(magnetic)superradiant phase is of second order and associates with the breaking of the discrete Z_(2) symmetry.On the other hand,the phase transition between the electric superradiant phase and the magnetic superradiant phase is of first order and relates to the breaking of the continuous U(1)symmetry.Several important physical quantities,for example the excitation energy and average photon number in the four phases,are derived.We find that the excitation spectra exhibit the Nambu–Goldstone mode.We calculate analytically the higher-order correction and finite-frequency exponents of relevant quantities.To confirm the validity of the low-energy effective Hamiltonians analytically derived by us,the finite-frequency scaling relation of the averaged photon numbers is calculated by numerically diagonalizing the two-mode quantum Rabi Hamiltonian.展开更多
In this paper, we study the nonclassical properties of the electromagnetic field resulting from the interaction of a three-level ∧-type atom with a two-mode field initially in the coherent state, such as squeezing pr...In this paper, we study the nonclassical properties of the electromagnetic field resulting from the interaction of a three-level ∧-type atom with a two-mode field initially in the coherent state, such as squeezing properties and sub-Poisson statistics. We show that the squeezing can be enhanced by selective atomic measurement.展开更多
Some noclassical properties in electromagnetic field are investigated for the interaction of two-modes initially taken in coherent-state representation with the three-level -type atom, such as squeezing properties an...Some noclassical properties in electromagnetic field are investigated for the interaction of two-modes initially taken in coherent-state representation with the three-level -type atom, such as squeezing properties and violation of the Cauchy-Schwartz inequality. The enhancement of field squeezing is found by selective atomic measurement. The Cauchy-Schwartz inequality is violated by the application of the classical field followed by detection in excited state.展开更多
An alternative scheme to approximately conditionally teleport entangled two-mode cavity state without Bell state measurement in cavity QED is proposed. The scheme is based on the resonant interaction of a ladder-type ...An alternative scheme to approximately conditionally teleport entangled two-mode cavity state without Bell state measurement in cavity QED is proposed. The scheme is based on the resonant interaction of a ladder-type three-level atom with two bimodal cavities. The entangled cavity state is reconstructed with only one atom interacting with the two cavities successively.展开更多
Exact formulas for the power spectrum and signal-to-noise ratio (SNR) with periodic additive signal arecalculated in the linear system.Then the phenomenon of resonance is studied in detail.We show that resonancepeak a...Exact formulas for the power spectrum and signal-to-noise ratio (SNR) with periodic additive signal arecalculated in the linear system.Then the phenomenon of resonance is studied in detail.We show that resonancepeak and suppressed valley exist in the curves of the SNR versus the coefficient of self-saturation, the net gain and thecross-coupling coefficient of the laser system.展开更多
In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intri...In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.展开更多
A new intelligent control method for welding positioner is proposed. Applying an improved fuzzy controller and a variable PID controller, a two-mode intelligent coordinating controller ( TMICC ) is designed on basis o...A new intelligent control method for welding positioner is proposed. Applying an improved fuzzy controller and a variable PID controller, a two-mode intelligent coordinating controller ( TMICC ) is designed on basis of fuzzy logic and rules. The simulation and experimental results show that this control system can obtain better dynamic and static characteristics.展开更多
Two-mode circular states,which are superposition states from some two-mode coherent states,are studiedtheoretically.It is shown that under certain conditions two-mode circular states may exhibit nonclassical effects,s...Two-mode circular states,which are superposition states from some two-mode coherent states,are studiedtheoretically.It is shown that under certain conditions two-mode circular states may exhibit nonclassical effects,suchas sub-Poissonian statistics and intermode correlation.We propose schemes to generate two-mode circular states by theinteraction of a trapped ion with traveling wave lasers.展开更多
Using two Einstein-Podolsky Rosen pair eigenstates |η) as quantum channels, we study the teleportationof two-mode quantum state of continuous variables.
We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properti...We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.展开更多
By virtue of the technique of integration within an ordered product of operators, we derive the normal ordering expansion of a one- and two-mode combination squeezing operator for two harmonic oscillators with coordin...By virtue of the technique of integration within an ordered product of operators, we derive the normal ordering expansion of a one- and two-mode combination squeezing operator for two harmonic oscillators with coordinate- momentum coupling. It turns out that this squeezing operator just diagonalizes the Hamiltonian H=p^21/2m1+m1ω^21x^21/2+p^222m2+m2ω^22x^22/2-λx2p1 so its ground state is a one- and two-mode combination squeezed state. Quantum fluctuation in the ground state is calculated.展开更多
Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters ...Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters with 50% and 66% mode conversion efficiencies are designed and fabricated on InP substrates. AIode conver- sion from the fundamental mode (TEo) to the first order mode (TE1) is successfully demonstrated within the wavelength range of 1280-1320nm. The 1.3-μm mode converters should be important devices in mode-division multiplexing systems in Ethernet systems.展开更多
For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon...For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon information theory. The theoretical secret information rate after error correction and privacy amplification is given in terms of the squeezed parameter and channel parameters. The results show that the two-mode squeezed state quantum key distribution is secure against an optimal beam splitter attack.展开更多
This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of ent...This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy.The results obtained from numerical calculation indicate that the squeezed period,the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field,the atomic motion and the field-mode structure.The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields.Moreover,there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.展开更多
Two new types of quantum states are constructed by applying the operator s(ξ) = exp(ξ* ab - ξa+b+) on the two-mode even and odd coherent states. The mathematical and quantum statistical properties of such st...Two new types of quantum states are constructed by applying the operator s(ξ) = exp(ξ* ab - ξa+b+) on the two-mode even and odd coherent states. The mathematical and quantum statistical properties of such states are investigated. Various nonclassical features of these states, such as squeezing properties, the inter-mode photon bunching, and the violation of Cauchy-Schwarz inequality, are discussed. The Wigner function in these states are studied in detail.展开更多
For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of o...For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of operators(IWOP) technique.It is found that these two factors are related to the Jacobi polynomials.In addition,some new relationships for Jacobi polynomials are presented.展开更多
We show that the time-dependent two-mode Fresnel operator is just the time-evolutional unitary operator governed by the Hamiltonian composed of quadratic combination of canonical operators in the way of exhibiting SU...We show that the time-dependent two-mode Fresnel operator is just the time-evolutional unitary operator governed by the Hamiltonian composed of quadratic combination of canonical operators in the way of exhibiting SU(1,1) algebra. This is an approach for obtaining the time-dependent Hamiltonian from the preassigned time evolution in classical phase space, an approach which is in contrast to Lewis-Riesenfeld's invariant operator theory of treating timedependent harmonic oscillators.展开更多
We explore how a two-mode squeezed vacuum state sechθeab tanh θ[00) evolves when it undergoes a single- mode amplitude dissipative channel with rate of decay k. We find that in this process not only the squeezing p...We explore how a two-mode squeezed vacuum state sechθeab tanh θ[00) evolves when it undergoes a single- mode amplitude dissipative channel with rate of decay k. We find that in this process not only the squeezing parameter decreases, tanhθ → e-kt tanh θ, but also the second-mode vacuum state evolves into a chaotic state exp{bbln[(1 - e-2kt) tanh2 θ]}. The outcome state is no more a pure state, but an entangled mixed state.展开更多
By analysing the properties of two-mode quadratures in an entangled state representation (ESR) we derive from ESR some complicated exponential quadrature operators for nonlinear two-mode squeezing, which directly le...By analysing the properties of two-mode quadratures in an entangled state representation (ESR) we derive from ESR some complicated exponential quadrature operators for nonlinear two-mode squeezing, which directly leads to wave function of the nonlinear squeezed state in ESR.展开更多
We propose a scheme to generate various nonclassical vibrational states in the collective motion of twotrapped ions, such as squeezed states, Schrodinger cat states, and SU(2) states. It is based on Raman-type excitat...We propose a scheme to generate various nonclassical vibrational states in the collective motion of twotrapped ions, such as squeezed states, Schrodinger cat states, and SU(2) states. It is based on Raman-type excitations.Two-mode coupling between the center-of-mass and relative vibrational modes can also be realized.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12135003)。
文摘We investigate the two-mode quantum Rabi model(QRM)describing the interaction between a two-level atom and a two-mode cavity field.The quantum phase transitions are found when the ratioηof transition frequency of atom to frequency of cavity field approaches infinity.We apply the Schrieffer–Wolff(SW)transformation to derive the low-energy effective Hamiltonian of the two-mode QRM,thus yielding the critical point and rich phase diagram of quantum phase transitions.The phase diagram consists of four regions:a normal phase,an electric superradiant phase,a magnetic superradiant phase and an electromagnetic superradiant phase.The quantum phase transition between the normal phase and the electric(magnetic)superradiant phase is of second order and associates with the breaking of the discrete Z_(2) symmetry.On the other hand,the phase transition between the electric superradiant phase and the magnetic superradiant phase is of first order and relates to the breaking of the continuous U(1)symmetry.Several important physical quantities,for example the excitation energy and average photon number in the four phases,are derived.We find that the excitation spectra exhibit the Nambu–Goldstone mode.We calculate analytically the higher-order correction and finite-frequency exponents of relevant quantities.To confirm the validity of the low-energy effective Hamiltonians analytically derived by us,the finite-frequency scaling relation of the averaged photon numbers is calculated by numerically diagonalizing the two-mode quantum Rabi Hamiltonian.
文摘In this paper, we study the nonclassical properties of the electromagnetic field resulting from the interaction of a three-level ∧-type atom with a two-mode field initially in the coherent state, such as squeezing properties and sub-Poisson statistics. We show that the squeezing can be enhanced by selective atomic measurement.
基金The project supported by the Natural Science Foundation of Fujian Province under Grant .No. W0650011 and Funds from Fujian Department of Education under Grant No. JB06041
文摘Some noclassical properties in electromagnetic field are investigated for the interaction of two-modes initially taken in coherent-state representation with the three-level -type atom, such as squeezing properties and violation of the Cauchy-Schwartz inequality. The enhancement of field squeezing is found by selective atomic measurement. The Cauchy-Schwartz inequality is violated by the application of the classical field followed by detection in excited state.
基金supported by the National Natural Science Foundation of China (Grant No 10674025)Funds from Key Laboratory of Quantum Information, University of Science and Technology of Chinathe Department Funds of Fuzhou University of China (Grant No 2007-XY-15)
文摘An alternative scheme to approximately conditionally teleport entangled two-mode cavity state without Bell state measurement in cavity QED is proposed. The scheme is based on the resonant interaction of a ladder-type three-level atom with two bimodal cavities. The entangled cavity state is reconstructed with only one atom interacting with the two cavities successively.
基金Supported by the National Natural Science Foundation of China under Grant No.10275025 the Natural Science Foundation of Hubei Province of China under Grant No.2005ABA051
文摘Exact formulas for the power spectrum and signal-to-noise ratio (SNR) with periodic additive signal arecalculated in the linear system.Then the phenomenon of resonance is studied in detail.We show that resonancepeak and suppressed valley exist in the curves of the SNR versus the coefficient of self-saturation, the net gain and thecross-coupling coefficient of the laser system.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374007)
文摘In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.
文摘A new intelligent control method for welding positioner is proposed. Applying an improved fuzzy controller and a variable PID controller, a two-mode intelligent coordinating controller ( TMICC ) is designed on basis of fuzzy logic and rules. The simulation and experimental results show that this control system can obtain better dynamic and static characteristics.
基金supported by the Natural Science Foundation of the Education Committee of Anhui Province of China under Grant No.JK2008A029
文摘Two-mode circular states,which are superposition states from some two-mode coherent states,are studiedtheoretically.It is shown that under certain conditions two-mode circular states may exhibit nonclassical effects,suchas sub-Poissonian statistics and intermode correlation.We propose schemes to generate two-mode circular states by theinteraction of a trapped ion with traveling wave lasers.
基金The project supported by Natural Science Foundation of Zhejiang Province of ChinaOpen Foundation of Lahoratory of HighIntensity Optics,Shanghai Institute of Optics and Fine Mechanics
文摘Using two Einstein-Podolsky Rosen pair eigenstates |η) as quantum channels, we study the teleportationof two-mode quantum state of continuous variables.
基金Project supported by the National Natural Science Foundation of China (Grant No 19874020), the Natural Science Foundation of Hunan Province, China (Grant No 05JJ30004), and the Scientific Research Fund of Hunan Provincial Education Department, China(Grant No 03c543).
文摘We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.
文摘By virtue of the technique of integration within an ordered product of operators, we derive the normal ordering expansion of a one- and two-mode combination squeezing operator for two harmonic oscillators with coordinate- momentum coupling. It turns out that this squeezing operator just diagonalizes the Hamiltonian H=p^21/2m1+m1ω^21x^21/2+p^222m2+m2ω^22x^22/2-λx2p1 so its ground state is a one- and two-mode combination squeezed state. Quantum fluctuation in the ground state is calculated.
基金Supported by the National Basic Research Program of China under Grant No 2014CB340102the National Natural Science Foundation of China under Grant Nos 61474111 and 61274046
文摘Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters with 50% and 66% mode conversion efficiencies are designed and fabricated on InP substrates. AIode conver- sion from the fundamental mode (TEo) to the first order mode (TE1) is successfully demonstrated within the wavelength range of 1280-1320nm. The 1.3-μm mode converters should be important devices in mode-division multiplexing systems in Ethernet systems.
基金Project supported by the Shanghai Jiaotong University (SJTU) Young Teacher Foundation,China (Grant No A2831B)the SJTU Participating in Research Projects (PRPs),China (Grant No T03011030)the National Natural Science Foundation of China(Grant No 60472018)
文摘For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon information theory. The theoretical secret information rate after error correction and privacy amplification is given in terms of the squeezed parameter and channel parameters. The results show that the two-mode squeezed state quantum key distribution is secure against an optimal beam splitter attack.
基金Project supported by the Scientific and Technological Program Foundation of Dezhou,Shandong Province of China (Grant No20080153)the Scientific Research Fund of Dezhou University of China (Grant No 07024)
文摘This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy.The results obtained from numerical calculation indicate that the squeezed period,the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field,the atomic motion and the field-mode structure.The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields.Moreover,there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.
基金The project supported by National Natural Science Foundation of China under Grant No. 10472040, Science Foundation of the Education Department of Liaoning Province under Grant No. 05L151
文摘Two new types of quantum states are constructed by applying the operator s(ξ) = exp(ξ* ab - ξa+b+) on the two-mode even and odd coherent states. The mathematical and quantum statistical properties of such states are investigated. Various nonclassical features of these states, such as squeezing properties, the inter-mode photon bunching, and the violation of Cauchy-Schwarz inequality, are discussed. The Wigner function in these states are studied in detail.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11264018 and 60978009)the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023)+1 种基金the National Basic Research Project of China (Grant No. 2011CBA00200)the Young Talents Foundation of Jiangxi Normal University,China
文摘For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of operators(IWOP) technique.It is found that these two factors are related to the Jacobi polynomials.In addition,some new relationships for Jacobi polynomials are presented.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475056.
文摘We show that the time-dependent two-mode Fresnel operator is just the time-evolutional unitary operator governed by the Hamiltonian composed of quadratic combination of canonical operators in the way of exhibiting SU(1,1) algebra. This is an approach for obtaining the time-dependent Hamiltonian from the preassigned time evolution in classical phase space, an approach which is in contrast to Lewis-Riesenfeld's invariant operator theory of treating timedependent harmonic oscillators.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11047133 and 10647133)the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 2009GQS0080 and 2010GQW0027)the Research Foundation of the Education Department of Jiangxi Province of China (Grant Nos. GJJ11339 and GJJ10097)
文摘We explore how a two-mode squeezed vacuum state sechθeab tanh θ[00) evolves when it undergoes a single- mode amplitude dissipative channel with rate of decay k. We find that in this process not only the squeezing parameter decreases, tanhθ → e-kt tanh θ, but also the second-mode vacuum state evolves into a chaotic state exp{bbln[(1 - e-2kt) tanh2 θ]}. The outcome state is no more a pure state, but an entangled mixed state.
基金supported by the National Natural Science Foundation of China (Grant No.10904033)the Natural Science Foundation of Hubei Province,China (Grant No.2009CDA145)
文摘By analysing the properties of two-mode quadratures in an entangled state representation (ESR) we derive from ESR some complicated exponential quadrature operators for nonlinear two-mode squeezing, which directly leads to wave function of the nonlinear squeezed state in ESR.
文摘We propose a scheme to generate various nonclassical vibrational states in the collective motion of twotrapped ions, such as squeezed states, Schrodinger cat states, and SU(2) states. It is based on Raman-type excitations.Two-mode coupling between the center-of-mass and relative vibrational modes can also be realized.