We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,...We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,which shows that even though the two channels are independent of each other,since the two modes of the initial state are entangled with each other,the final state remains entangled.Nevertheless,although the squeezing(entanglement)between the two modes is weakened after the diffusion,it is not completely removed.We also highlight the law of photon number evolution.In the calculation process used in this paper,we make full use of the summation method within the ordered product of operators and the generating function formula for two-variable Hermite polynomials.展开更多
This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of ent...This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy.The results obtained from numerical calculation indicate that the squeezed period,the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field,the atomic motion and the field-mode structure.The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields.Moreover,there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.展开更多
The Zhongjiang gas field is a typical large gas field in terrigenous strata of the Western Sichuan Depression.It remains debatable which member of the Upper Triassic Xujiahe Formation served as the source rocks and ho...The Zhongjiang gas field is a typical large gas field in terrigenous strata of the Western Sichuan Depression.It remains debatable which member of the Upper Triassic Xujiahe Formation served as the source rocks and how significant the member contributed to the gas accumulations in the Zhongjiang gas field.In this study,we analyzed the essential characteristics of the Lower Jurassic source rocks and the geochemical features of light hydrocarbons in natural gas from the 2nd(T_(3)χ^(2))and 4th members(T_(3)χ^(4))of the Upper Triassic Xujiahe Formation(T_(3)χ),as well as the Middle Jurassic Shaximiao(J_(2)s)and Qianfoya(J_(2)q)formations.Based on this,we explored the sources of the natural gas in the Zhongjiang gas field and determined the natural gas migration patterns and their effects on the properties of light hydrocarbons in the natural gas.The results indicate that the Lower Jurassic lacustrine source rocks of the Zhongjiang gas field contain humic organic matter,with vitrinite reflectance(R_(0))values ranging from 0.86%to 0.98%.Samples meeting the criterion for effective source rocks[total organic carbon(TOC)content≥0.75%]exhibited an average TOC content of merely 1.02%,suggesting significantly lower hydrocarbon generation potential than source rocks in the underlying T3x,which show higher thermal maturity and TOC contents.For natural gas samples from T_(3)χ^(2),T_(3)χ^(4),J_(2)s,and J_(2)q reservoirs,their C_(5-7)iso-alkane content was significantly higher than their n-alkane content,and their methylcyclohexane(MCH)index ranged from 59.0%to 77.3%,indicating the predominance of methylcyclohexane in C_(7)light hydrocarbons.As indicated by the origin identification and gas-source correlation based on the geochemical features of light hydrocarbons,the natural gas in the Zhongjiang gas field is typical coal-derived gas.The gas from the primary pay zone of the Shaximiao Formation,with significantly high K_(1),(P_(2)+N_(2))/C_(7),and P_(3)/C_(7)values,predominantly originated from the 5th member of the T3x and migrated in the free phase,with a small amount possibly sourced from the Lower Jurassic source rocks.The dissolution and adsorption during gas migration led to a decrease in the aromatic content in C_(6-7)light hydrocarbons and an increase in the isoheptane values.Therefore,their effects must be considered when determining the gas origin and thermal maturity based on the aromatic content in C_(6-7) light hydrocarbons and iso-heptane values.展开更多
We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properti...We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.展开更多
Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical char...Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical characteristics of light hydrocarbons on the migration features,dissolution and escape of natural gas from the Dongsheng gas field in the Ordos Basin is revealed,and the effect of migration on specific light hydrocarbon indexes is further discussed.The study indicates that,natural gas from the Lower Shihezi Formation(Pix)in the Dongsheng gas field displays higher iso-C5-7contents than n-C5-7contents,and the C6-7light hydrocarbons are composed of paraffins with extremely low aromatic contents(<0.4%),whereas the C7light hydrocarbons are dominated by methylcyclohexane,suggesting the characteristics of coal-derived gas with the influence by secondary alterations such as dissolution.The natural gas from the Dongsheng gas field has experienced free-phase migration from south to north and different degrees of dissolution after charging,and the gas in the Shiguhao area to the north of the Borjianghaizi fault has experienced apparent diffusion loss after accumulation.Long-distance migration in free phase results in the decrease of the relative contents of the methylcyclohexane in C7 light hydrocarbons and the toluene/n-heptane ratio,as well as the increase of the n-heptane/methylcyclohexane ratio and heptane values.The dissolution causes the increase of isoheptane values of the light hydrocarbons,whereas the diffusion loss of natural gas in the Shiguhao area results in the increase of n-C5-7contents compared to the iso-C5-7contents.展开更多
Considering two identical two-level atoms interacting with two mode thermal field through a nondegeratetwo-photon process,we study the entanglement dynamics between two atoms when the atomic coherence exists.It showst...Considering two identical two-level atoms interacting with two mode thermal field through a nondegeratetwo-photon process,we study the entanglement dynamics between two atoms when the atomic coherence exists.It showsthat the entanglement is dependent on the initial atomic states,and is greatly enhanced due to atomic coherence ascompared with the case when the atomic coherence is ignored.The results also show that the entanglement can becontrolled by changing the relative phases and the amplitudes of the polarized atoms.展开更多
Entanglement properties of two-mode squeezed coherent states in the radiation field &re investigated according to the entanglement criterion [Phys. Rev. Lett. 84 (2000) 2722]. The dependence of entanglement on sque...Entanglement properties of two-mode squeezed coherent states in the radiation field &re investigated according to the entanglement criterion [Phys. Rev. Lett. 84 (2000) 2722]. The dependence of entanglement on squeeze angle and squeeze parameter is discussed. It shows that the system evolves into entangled states and entanglement does not increase persistently with the increase of squeeze angle and squeeze parameter. There only exists a certain squeeze angle in which the entanglement exists continuously.展开更多
We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents...We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents in the two rings using the normalized correlation function CAB. We show that when the parameter c~ is very small for the separable state with the density matrix ρ = {│α,-α) (α,-α│ + │-α, α) (-α, α│}/2 and entangled coherent state {(ECS) [u) = N1(│α, -α) + │-α, α)} fields, the dynamic behaviours of the normalized correlation function CAB are similar, but it is quite different for the entangled coherent state │u') = N2(│α,-α) - │-α, α)} field. When the parameter α is very large, the dynamic behaviours of CAB are almost the same for the separable state, entangled coherent state │u) and [u'〉 fields. For the two-mode squeezed vacuum state field the maximum of CAB increases monotonically with the squeezing parameter γ, and as γ→ ∞ , CAB→ 1. This means that the supercurrents in the two rings A and B are quantum mechanically correlated perfectly. It is concluded that not all the quantum correlations in the two-mode nonclassical state field can be transferred to the supercurrents; and the transfer depends on the state of the two-mode nonclassical state field prepared.展开更多
It is essential to investigate the light field camera parameters for the accurate flame temperature measurement because the sampling characteristics of the flame radiation can be varied with them. In this study, novel...It is essential to investigate the light field camera parameters for the accurate flame temperature measurement because the sampling characteristics of the flame radiation can be varied with them. In this study, novel indices of the light field camera were proposed to investigate the directional and spatial sampling characteristics of the flame radiation. Effects of light field camera parameters such as focal length and magnification of the main lens, focal length and magnification of the microlens were investigated. It was observed that the sampling characteristics of the flame are varied with the different parameters of the light field camera. The optimized parameters of the light field camera were then proposed for the flame radiation sampling. The larger sampling angle(23 times larger) is achieved by the optimized parameters compared to the commercial light field camera parameters. A non-negative least square(NNLS) algorithm was used to reconstruct the flame temperature. The reconstruction accuracy was also evaluated by the optimized parameters. The results suggested that the optimized parameters can provide higher reconstruction accuracy for axisymmetric and non-symmetric flame conditions in comparison to the commercial light field camera.展开更多
The backscattering signal, which arises from the pulsed laser traveling through water, has limited the lidar system sensitivity and underwater target contrast. The transmitted optical carrier is modulated to be ultras...The backscattering signal, which arises from the pulsed laser traveling through water, has limited the lidar system sensitivity and underwater target contrast. The transmitted optical carrier is modulated to be ultrashort pulsed laser and it is effective to suppress the backscattering to adopt the coherent detection technology by identifying the modulation envelope. A nonstationary light field is formed in seawater by the ultrashort pulsed laser. The inherent relationship between the nonstationary light field formed by modulated lidar and the stationary light field formed by conventional lidar was discussed and the backscattering light model of the stationary light field for the ultrashort pulsed laser was proposed. The backscattering signal in modulated lidar system was processed and analyzed in the frequency domain on the basis of the model.展开更多
Light field imaging technology can obtain three-dimensional(3D)information of a test surface in a single exposure.Traditional light field reconstruction algorithms not only take a long time to trace back to the origin...Light field imaging technology can obtain three-dimensional(3D)information of a test surface in a single exposure.Traditional light field reconstruction algorithms not only take a long time to trace back to the original image,but also require the exact parameters of the light field system,such as the position and posture of a microlens array(MLA),which will cause errors in the reconstructed image if these parameters cannot be precisely obtained.This paper proposes a reconstruction algorithm for light field imaging based on the point spread function(PSF),which does not require prior knowledge of the system.The accurate PSF derivation process of a light field system is presented,and modeling and simulation were conducted to obtain the relationship between the spatial distribution characteristics and the PSF of the light field system.A morphology-based method is proposed to analyze the overlapping area of the subimages of light field images to identify the accurate spatial location of the MLA used in the system,which is thereafter used to accurately refocus light field imaging.A light field system is built to verify the algorithm’s effectiveness.Experimental results show that the measurement accuracy is increased over 41.0%compared with the traditional method by measuring a step standard.The accuracy of parameters is also improved through a microstructure measurement with a peak-to-valley value of 25.4%and root mean square value of 23.5%improvement.This further validates that the algorithm can effectively improve the refocusing efficiency and the accuracy of the light field imaging results with the superiority of refocusing light field imaging without prior knowledge of the system.The proposed method provides a new solution for fast and accurate 3D measurement based on a light field.展开更多
A lateral current regulator diode (CRD) with field plates is proposed and experimentally demonstrated. The proposed CFtD is based on the junction field-effect transistor (JFET) structure. A cathode field plate is ...A lateral current regulator diode (CRD) with field plates is proposed and experimentally demonstrated. The proposed CFtD is based on the junction field-effect transistor (JFET) structure. A cathode field plate is adopted to alleviate the channel-length modulation effect and to improve the saturated I-V characteristics. An anode field plate is induced to achieve a high breakdown voltage VB of the CRD. The influence of the key device parameters on the I-V characteristics of the lateral CRD are discussed. Experimental results show that the proposed CRD presents good I-V characteristics with a high VB about 180 V and a low knee voltage (Vk) below 3 V. Furthermore, the proposed CRD has a negative temperature coefficient. The well characteristic of the proposed CRD makes it a cost-effective solution for light-emitting-diode lighting.展开更多
The working principle of LFEC(Low frequency electromagnetic casting) process developed in Northeastern University, China was introduced and the metallurgical results of LFEC were discussed according to the casting p...The working principle of LFEC(Low frequency electromagnetic casting) process developed in Northeastern University, China was introduced and the metallurgical results of LFEC were discussed according to the casting practices. The low frequency field around the mold produces Lorenz force, which can be divided into two parts: one is the potential force which will be balanced by a pressure gradient of the liquid and results in the formation of a convex surface meniscus and improves the surface quality; the other is the rotary force which stirs the liquid in the mold to refine the microstructures and homogenize the distribution of alloying elements. LFEC can refine microstructures remarkably, improve surface quality of the ingots, depress macrosegregation and eliminate cracks. Some new technologies, such as horizontal direct chill casting under low-frequency electromagnetic field (HLEC), DC casting of hollow billets under electromagnetic fields (HBEC), electromagnetic modifying of hypereutectic A1-Si alloys(EMM), air film casting under static magnetic field (AFCM), and multi-ingots casting under low-frequency magnetic field (MLFEC) were developed based on LFEC.展开更多
Light field 3D display technology is considered a revolutionary technology to address the critical visual fatigue issues in the existing 3D displays.Tabletop light field 3D display provides a brand-new display form th...Light field 3D display technology is considered a revolutionary technology to address the critical visual fatigue issues in the existing 3D displays.Tabletop light field 3D display provides a brand-new display form that satisfies multi-user shared viewing and collaborative works,and it is poised to become a potential alternative to the traditional wall and portable display forms.However,a large radial viewing angle and correct radial perspective and parallax are still out of reach for most current tabletop light field 3D displays due to the limited amount of spatial information.To address the viewing angle and perspective issues,a novel integral imaging-based tabletop light field 3D display with a simple flat-panel structure is proposed and developed by applying a compound lens array,two spliced 8K liquid crystal display panels,and a light shaping diffuser screen.The compound lens array is designed to be composed of multiple three-piece compound lens units by employing a reverse design scheme,which greatly extends the radial viewing angle in the case of a limited amount of spatial information and balances other important 3D display parameters.The proposed display has a radial viewing angle of 68.7°in a large display size of 43.5 inches,which is larger than the conventional tabletop light field 3D displays.The radial perspective and parallax are correct,and high-resolution 3D images can be reproduced in large radial viewing positions.We envision that this proposed display opens up possibility for redefining the display forms of consumer electronics.展开更多
Light fields are vector functions that map the geometry of light rays to the corresponding plenoptic attributes.They describe the holographic information of scenes by representing the amount of light flowing in every ...Light fields are vector functions that map the geometry of light rays to the corresponding plenoptic attributes.They describe the holographic information of scenes by representing the amount of light flowing in every direction through every point in space.The physical concept of light fields was first proposed in 1936,and light fields are becoming increasingly important in the field of computer graphics,especially with the fast growth of computing capacity as well as network bandwidth.In this article,light field imaging is reviewed from the following aspects with an emphasis on the achievements of the past five years:(1)depth estimation,(2)content editing,(3)image quality,(4)scene reconstruction and view synthesis,and(5)industrial products because the technologies of lights fields also intersect with industrial applications.State-of-the-art research has focused on light field acquisition,manipulation,and display.In addition,the research has extended from the laboratory to industry.According to these achievements and challenges,in the near future,the applications of light fields could offer more portability,accessibility,compatibility,and ability to visualize the world.展开更多
森林的实时渲染及光照是视景系统中的一个难题.基于图像的渲染方法(IBR)由于渲染速度与模型复杂度无关,被广泛应用于场景重建.基于光流场(Light Field Rendering)的IBR技术,提出一种迭代投射算法来进行外形重建,实现了具有实时光影特征...森林的实时渲染及光照是视景系统中的一个难题.基于图像的渲染方法(IBR)由于渲染速度与模型复杂度无关,被广泛应用于场景重建.基于光流场(Light Field Rendering)的IBR技术,提出一种迭代投射算法来进行外形重建,实现了具有实时光影特征的森林效果.实验表明该算法结合了传统迭代、投射算法各自的优点,在质量和效率方面取得了平衡.展开更多
The formation of the retroreflected light field is introduced in the paper and the components of the retroreflected light field are analyzed.Furthermore,a deep analysis of the factors affecting energy distribution of ...The formation of the retroreflected light field is introduced in the paper and the components of the retroreflected light field are analyzed.Furthermore,a deep analysis of the factors affecting energy distribution of the retroreflected light,such as design deviation,angle of incidence,was made.The simulation of the retroreflected light field was done.Recommendation is made in detail on both the energy distribution of the retroreflected light field at different working distances and the energy distribution of the retroreflected light field at a short distance when the diverging light comes.At last,two kinds of measuring instrument for the retroreflector are introduced,one is the long tunnel measuring instrument,the other is the minitype measuring instrument based on the character of the retroreflector when the diverging light comes.展开更多
We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investig...We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investigate focusing light through a scattering sample using the superpixel methods with different target complex fields.Then, single-point and multiple-point focusing experiments are performed using this superpixel-based complex modulation method. In our experiment, up to 71.5% relative enhancement is realized. The use of the DMDbased superpixel method for the control of the complex field of incident light opens an avenue to improve the enhancement of focusing light through scattering media.展开更多
his paper adopts the 3-3-2 information processing method for the capture of moving objects as its premise, and proposes a basic principle of three-dimensional (3D) imaging using biological compound eye. Traditional bi...his paper adopts the 3-3-2 information processing method for the capture of moving objects as its premise, and proposes a basic principle of three-dimensional (3D) imaging using biological compound eye. Traditional bionic vision is limited by the available hardware. Therefore, in this paper, the new-generation technology of microlens-array light-field camera is proposed as a potential method for the extraction of depth information from a single image. A significant characteristic of light-field imaging is that it records intensity and directional information from the lights entering the camera. Herein, a refocusing method using light-field image is proposed. By calculating the focusing cost at different depths from the object, the imaging plane of the object is determined, and a depth map is constructed based on the position of the object’s imaging plane. Compared with traditional light-field depth estimation, the depth map calculated by this method can significantly improve resolution and does not depend on the number of light-field microlenses. In addition, considering that software algorithms rely on hardware structure, this study develops an imaging hardware that is only 7 cm long based on the second-generation microlens camera’s structure, further validating its important refocusing characteristics. It thereby provides a technical foundation for 3D imaging with a single camera.展开更多
Based on the practical situation of nondestructive examination, the calculation model of the composite scattering is established by using a three-dimensional half-space finite difference time domain, and the Monte Car...Based on the practical situation of nondestructive examination, the calculation model of the composite scattering is established by using a three-dimensional half-space finite difference time domain, and the Monte Carlo method is used to solve the problem of the optical surface with roughness in the proposed scheme. Moreover, the defect particles are observed as periodic particles for a more complex situation. In order to obtain the scattering contribution of defects inside the optical surface, a difference radar cross section is added into the model to analyze the selected calculations on the effects of numbers, separation distances, different depths and different materials of defects. The effects of different incident angles are also discussed. The numerical results are analyzed in detail to demonstrate the best position to find the defects in the optical surface by detecting in steps of a fixed degree for the incident angle.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents in College of Anhui Province,China(Grant No.gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2019A0688 and KJ2020A0638)。
文摘We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,which shows that even though the two channels are independent of each other,since the two modes of the initial state are entangled with each other,the final state remains entangled.Nevertheless,although the squeezing(entanglement)between the two modes is weakened after the diffusion,it is not completely removed.We also highlight the law of photon number evolution.In the calculation process used in this paper,we make full use of the summation method within the ordered product of operators and the generating function formula for two-variable Hermite polynomials.
基金Project supported by the Scientific and Technological Program Foundation of Dezhou,Shandong Province of China (Grant No20080153)the Scientific Research Fund of Dezhou University of China (Grant No 07024)
文摘This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy.The results obtained from numerical calculation indicate that the squeezed period,the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field,the atomic motion and the field-mode structure.The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields.Moreover,there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.
基金funded by the National Natural Science Foundation of China(No.42172149,No.U2244209)the SINOPEC Science and Technology Project(No.P22132,No.P21077-1).
文摘The Zhongjiang gas field is a typical large gas field in terrigenous strata of the Western Sichuan Depression.It remains debatable which member of the Upper Triassic Xujiahe Formation served as the source rocks and how significant the member contributed to the gas accumulations in the Zhongjiang gas field.In this study,we analyzed the essential characteristics of the Lower Jurassic source rocks and the geochemical features of light hydrocarbons in natural gas from the 2nd(T_(3)χ^(2))and 4th members(T_(3)χ^(4))of the Upper Triassic Xujiahe Formation(T_(3)χ),as well as the Middle Jurassic Shaximiao(J_(2)s)and Qianfoya(J_(2)q)formations.Based on this,we explored the sources of the natural gas in the Zhongjiang gas field and determined the natural gas migration patterns and their effects on the properties of light hydrocarbons in the natural gas.The results indicate that the Lower Jurassic lacustrine source rocks of the Zhongjiang gas field contain humic organic matter,with vitrinite reflectance(R_(0))values ranging from 0.86%to 0.98%.Samples meeting the criterion for effective source rocks[total organic carbon(TOC)content≥0.75%]exhibited an average TOC content of merely 1.02%,suggesting significantly lower hydrocarbon generation potential than source rocks in the underlying T3x,which show higher thermal maturity and TOC contents.For natural gas samples from T_(3)χ^(2),T_(3)χ^(4),J_(2)s,and J_(2)q reservoirs,their C_(5-7)iso-alkane content was significantly higher than their n-alkane content,and their methylcyclohexane(MCH)index ranged from 59.0%to 77.3%,indicating the predominance of methylcyclohexane in C_(7)light hydrocarbons.As indicated by the origin identification and gas-source correlation based on the geochemical features of light hydrocarbons,the natural gas in the Zhongjiang gas field is typical coal-derived gas.The gas from the primary pay zone of the Shaximiao Formation,with significantly high K_(1),(P_(2)+N_(2))/C_(7),and P_(3)/C_(7)values,predominantly originated from the 5th member of the T3x and migrated in the free phase,with a small amount possibly sourced from the Lower Jurassic source rocks.The dissolution and adsorption during gas migration led to a decrease in the aromatic content in C_(6-7)light hydrocarbons and an increase in the isoheptane values.Therefore,their effects must be considered when determining the gas origin and thermal maturity based on the aromatic content in C_(6-7) light hydrocarbons and iso-heptane values.
基金Project supported by the National Natural Science Foundation of China (Grant No 19874020), the Natural Science Foundation of Hunan Province, China (Grant No 05JJ30004), and the Scientific Research Fund of Hunan Provincial Education Department, China(Grant No 03c543).
文摘We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.
基金Supported by the National Natural Science Foundation of China(42172149,U2244209)Sinopec Science and Technology Research Project(P23230,P22132)。
文摘Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical characteristics of light hydrocarbons on the migration features,dissolution and escape of natural gas from the Dongsheng gas field in the Ordos Basin is revealed,and the effect of migration on specific light hydrocarbon indexes is further discussed.The study indicates that,natural gas from the Lower Shihezi Formation(Pix)in the Dongsheng gas field displays higher iso-C5-7contents than n-C5-7contents,and the C6-7light hydrocarbons are composed of paraffins with extremely low aromatic contents(<0.4%),whereas the C7light hydrocarbons are dominated by methylcyclohexane,suggesting the characteristics of coal-derived gas with the influence by secondary alterations such as dissolution.The natural gas from the Dongsheng gas field has experienced free-phase migration from south to north and different degrees of dissolution after charging,and the gas in the Shiguhao area to the north of the Borjianghaizi fault has experienced apparent diffusion loss after accumulation.Long-distance migration in free phase results in the decrease of the relative contents of the methylcyclohexane in C7 light hydrocarbons and the toluene/n-heptane ratio,as well as the increase of the n-heptane/methylcyclohexane ratio and heptane values.The dissolution causes the increase of isoheptane values of the light hydrocarbons,whereas the diffusion loss of natural gas in the Shiguhao area results in the increase of n-C5-7contents compared to the iso-C5-7contents.
基金Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant No.10905028the Program for Science and Technology Department of Henan Province of China under Grant No.102300410050+1 种基金the Opening Project of Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control (Hunan Normal University),Ministry of Education under Grant No.QSQC1003by the Cultivation Fund of Luoyang Normal College under Grant No.10000854
文摘Considering two identical two-level atoms interacting with two mode thermal field through a nondegeratetwo-photon process,we study the entanglement dynamics between two atoms when the atomic coherence exists.It showsthat the entanglement is dependent on the initial atomic states,and is greatly enhanced due to atomic coherence ascompared with the case when the atomic coherence is ignored.The results also show that the entanglement can becontrolled by changing the relative phases and the amplitudes of the polarized atoms.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10174024 and 10474025
文摘Entanglement properties of two-mode squeezed coherent states in the radiation field &re investigated according to the entanglement criterion [Phys. Rev. Lett. 84 (2000) 2722]. The dependence of entanglement on squeeze angle and squeeze parameter is discussed. It shows that the system evolves into entangled states and entanglement does not increase persistently with the increase of squeeze angle and squeeze parameter. There only exists a certain squeeze angle in which the entanglement exists continuously.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374007).
文摘We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents in the two rings using the normalized correlation function CAB. We show that when the parameter c~ is very small for the separable state with the density matrix ρ = {│α,-α) (α,-α│ + │-α, α) (-α, α│}/2 and entangled coherent state {(ECS) [u) = N1(│α, -α) + │-α, α)} fields, the dynamic behaviours of the normalized correlation function CAB are similar, but it is quite different for the entangled coherent state │u') = N2(│α,-α) - │-α, α)} field. When the parameter α is very large, the dynamic behaviours of CAB are almost the same for the separable state, entangled coherent state │u) and [u'〉 fields. For the two-mode squeezed vacuum state field the maximum of CAB increases monotonically with the squeezing parameter γ, and as γ→ ∞ , CAB→ 1. This means that the supercurrents in the two rings A and B are quantum mechanically correlated perfectly. It is concluded that not all the quantum correlations in the two-mode nonclassical state field can be transferred to the supercurrents; and the transfer depends on the state of the two-mode nonclassical state field prepared.
基金supported by the National Natural Science Foundation of China(Grant Nos.51676044 and 51327803)the Social Development Project of Jiangsu Province,China(Grant No.BE20187053)+1 种基金the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX170081)China Scholarship Council
文摘It is essential to investigate the light field camera parameters for the accurate flame temperature measurement because the sampling characteristics of the flame radiation can be varied with them. In this study, novel indices of the light field camera were proposed to investigate the directional and spatial sampling characteristics of the flame radiation. Effects of light field camera parameters such as focal length and magnification of the main lens, focal length and magnification of the microlens were investigated. It was observed that the sampling characteristics of the flame are varied with the different parameters of the light field camera. The optimized parameters of the light field camera were then proposed for the flame radiation sampling. The larger sampling angle(23 times larger) is achieved by the optimized parameters compared to the commercial light field camera parameters. A non-negative least square(NNLS) algorithm was used to reconstruct the flame temperature. The reconstruction accuracy was also evaluated by the optimized parameters. The results suggested that the optimized parameters can provide higher reconstruction accuracy for axisymmetric and non-symmetric flame conditions in comparison to the commercial light field camera.
文摘The backscattering signal, which arises from the pulsed laser traveling through water, has limited the lidar system sensitivity and underwater target contrast. The transmitted optical carrier is modulated to be ultrashort pulsed laser and it is effective to suppress the backscattering to adopt the coherent detection technology by identifying the modulation envelope. A nonstationary light field is formed in seawater by the ultrashort pulsed laser. The inherent relationship between the nonstationary light field formed by modulated lidar and the stationary light field formed by conventional lidar was discussed and the backscattering light model of the stationary light field for the ultrashort pulsed laser was proposed. The backscattering signal in modulated lidar system was processed and analyzed in the frequency domain on the basis of the model.
基金This work was partially supported by the National Key R&D Program of China(No.2017YFA0701200)the National Nat-ural Science Foundation of China(Grant No.52075100)Shanghai Science and Technology Committee Innovation Grant(19ZR1404600).
文摘Light field imaging technology can obtain three-dimensional(3D)information of a test surface in a single exposure.Traditional light field reconstruction algorithms not only take a long time to trace back to the original image,but also require the exact parameters of the light field system,such as the position and posture of a microlens array(MLA),which will cause errors in the reconstructed image if these parameters cannot be precisely obtained.This paper proposes a reconstruction algorithm for light field imaging based on the point spread function(PSF),which does not require prior knowledge of the system.The accurate PSF derivation process of a light field system is presented,and modeling and simulation were conducted to obtain the relationship between the spatial distribution characteristics and the PSF of the light field system.A morphology-based method is proposed to analyze the overlapping area of the subimages of light field images to identify the accurate spatial location of the MLA used in the system,which is thereafter used to accurately refocus light field imaging.A light field system is built to verify the algorithm’s effectiveness.Experimental results show that the measurement accuracy is increased over 41.0%compared with the traditional method by measuring a step standard.The accuracy of parameters is also improved through a microstructure measurement with a peak-to-valley value of 25.4%and root mean square value of 23.5%improvement.This further validates that the algorithm can effectively improve the refocusing efficiency and the accuracy of the light field imaging results with the superiority of refocusing light field imaging without prior knowledge of the system.The proposed method provides a new solution for fast and accurate 3D measurement based on a light field.
基金Supported by the National Natural Science Foundation of China under Grant No 61376080
文摘A lateral current regulator diode (CRD) with field plates is proposed and experimentally demonstrated. The proposed CFtD is based on the junction field-effect transistor (JFET) structure. A cathode field plate is adopted to alleviate the channel-length modulation effect and to improve the saturated I-V characteristics. An anode field plate is induced to achieve a high breakdown voltage VB of the CRD. The influence of the key device parameters on the I-V characteristics of the lateral CRD are discussed. Experimental results show that the proposed CRD presents good I-V characteristics with a high VB about 180 V and a low knee voltage (Vk) below 3 V. Furthermore, the proposed CRD has a negative temperature coefficient. The well characteristic of the proposed CRD makes it a cost-effective solution for light-emitting-diode lighting.
基金Project(2005CB623707) supported by the National Basic Research Program of China Projects(2007CB613701 and 2007CB613702) supported by the National Key Basic Research Program of China+2 种基金Projects(50974037,51004032 and 50904018) supported by the National Natural Science Foundation of ChinaProject(NCET-08-0098) supported by the New Century Excellent Talents in University,Ministry of Education,ChinaProject(20100471468) supported by China Postdoctoral Science Foundation
文摘The working principle of LFEC(Low frequency electromagnetic casting) process developed in Northeastern University, China was introduced and the metallurgical results of LFEC were discussed according to the casting practices. The low frequency field around the mold produces Lorenz force, which can be divided into two parts: one is the potential force which will be balanced by a pressure gradient of the liquid and results in the formation of a convex surface meniscus and improves the surface quality; the other is the rotary force which stirs the liquid in the mold to refine the microstructures and homogenize the distribution of alloying elements. LFEC can refine microstructures remarkably, improve surface quality of the ingots, depress macrosegregation and eliminate cracks. Some new technologies, such as horizontal direct chill casting under low-frequency electromagnetic field (HLEC), DC casting of hollow billets under electromagnetic fields (HBEC), electromagnetic modifying of hypereutectic A1-Si alloys(EMM), air film casting under static magnetic field (AFCM), and multi-ingots casting under low-frequency magnetic field (MLFEC) were developed based on LFEC.
基金We are grateful for financial supports from National Key R&D Program of China(Grant No.2021YFB2802300)the National Natural Science Foundation of China(Grant Nos.62105014,62105016,and 62020106010)。
文摘Light field 3D display technology is considered a revolutionary technology to address the critical visual fatigue issues in the existing 3D displays.Tabletop light field 3D display provides a brand-new display form that satisfies multi-user shared viewing and collaborative works,and it is poised to become a potential alternative to the traditional wall and portable display forms.However,a large radial viewing angle and correct radial perspective and parallax are still out of reach for most current tabletop light field 3D displays due to the limited amount of spatial information.To address the viewing angle and perspective issues,a novel integral imaging-based tabletop light field 3D display with a simple flat-panel structure is proposed and developed by applying a compound lens array,two spliced 8K liquid crystal display panels,and a light shaping diffuser screen.The compound lens array is designed to be composed of multiple three-piece compound lens units by employing a reverse design scheme,which greatly extends the radial viewing angle in the case of a limited amount of spatial information and balances other important 3D display parameters.The proposed display has a radial viewing angle of 68.7°in a large display size of 43.5 inches,which is larger than the conventional tabletop light field 3D displays.The radial perspective and parallax are correct,and high-resolution 3D images can be reproduced in large radial viewing positions.We envision that this proposed display opens up possibility for redefining the display forms of consumer electronics.
基金The last author was supported by the National Key R&D Program of China,No.2019YFB1405703.
文摘Light fields are vector functions that map the geometry of light rays to the corresponding plenoptic attributes.They describe the holographic information of scenes by representing the amount of light flowing in every direction through every point in space.The physical concept of light fields was first proposed in 1936,and light fields are becoming increasingly important in the field of computer graphics,especially with the fast growth of computing capacity as well as network bandwidth.In this article,light field imaging is reviewed from the following aspects with an emphasis on the achievements of the past five years:(1)depth estimation,(2)content editing,(3)image quality,(4)scene reconstruction and view synthesis,and(5)industrial products because the technologies of lights fields also intersect with industrial applications.State-of-the-art research has focused on light field acquisition,manipulation,and display.In addition,the research has extended from the laboratory to industry.According to these achievements and challenges,in the near future,the applications of light fields could offer more portability,accessibility,compatibility,and ability to visualize the world.
文摘森林的实时渲染及光照是视景系统中的一个难题.基于图像的渲染方法(IBR)由于渲染速度与模型复杂度无关,被广泛应用于场景重建.基于光流场(Light Field Rendering)的IBR技术,提出一种迭代投射算法来进行外形重建,实现了具有实时光影特征的森林效果.实验表明该算法结合了传统迭代、投射算法各自的优点,在质量和效率方面取得了平衡.
文摘The formation of the retroreflected light field is introduced in the paper and the components of the retroreflected light field are analyzed.Furthermore,a deep analysis of the factors affecting energy distribution of the retroreflected light,such as design deviation,angle of incidence,was made.The simulation of the retroreflected light field was done.Recommendation is made in detail on both the energy distribution of the retroreflected light field at different working distances and the energy distribution of the retroreflected light field at a short distance when the diverging light comes.At last,two kinds of measuring instrument for the retroreflector are introduced,one is the long tunnel measuring instrument,the other is the minitype measuring instrument based on the character of the retroreflector when the diverging light comes.
基金Supported by the Natural Science Foundation of Beijing under Grant Nos 2162033 and 7182091the National Natural Science Foundation of China under Grant No 21627813
文摘We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investigate focusing light through a scattering sample using the superpixel methods with different target complex fields.Then, single-point and multiple-point focusing experiments are performed using this superpixel-based complex modulation method. In our experiment, up to 71.5% relative enhancement is realized. The use of the DMDbased superpixel method for the control of the complex field of incident light opens an avenue to improve the enhancement of focusing light through scattering media.
基金The National Major Project Research and Development Project (2017YFB0503003)The National Natural Science Foundation of China(61101157, 60602042).
文摘his paper adopts the 3-3-2 information processing method for the capture of moving objects as its premise, and proposes a basic principle of three-dimensional (3D) imaging using biological compound eye. Traditional bionic vision is limited by the available hardware. Therefore, in this paper, the new-generation technology of microlens-array light-field camera is proposed as a potential method for the extraction of depth information from a single image. A significant characteristic of light-field imaging is that it records intensity and directional information from the lights entering the camera. Herein, a refocusing method using light-field image is proposed. By calculating the focusing cost at different depths from the object, the imaging plane of the object is determined, and a depth map is constructed based on the position of the object’s imaging plane. Compared with traditional light-field depth estimation, the depth map calculated by this method can significantly improve resolution and does not depend on the number of light-field microlenses. In addition, considering that software algorithms rely on hardware structure, this study develops an imaging hardware that is only 7 cm long based on the second-generation microlens camera’s structure, further validating its important refocusing characteristics. It thereby provides a technical foundation for 3D imaging with a single camera.
基金supported by the National Natural Science Foundation of China(Grant Nos.61308071,61601355,and 61571355)the Natural Science Foundation of Shaanxi Province,China(Grant No.2016JM6011)
文摘Based on the practical situation of nondestructive examination, the calculation model of the composite scattering is established by using a three-dimensional half-space finite difference time domain, and the Monte Carlo method is used to solve the problem of the optical surface with roughness in the proposed scheme. Moreover, the defect particles are observed as periodic particles for a more complex situation. In order to obtain the scattering contribution of defects inside the optical surface, a difference radar cross section is added into the model to analyze the selected calculations on the effects of numbers, separation distances, different depths and different materials of defects. The effects of different incident angles are also discussed. The numerical results are analyzed in detail to demonstrate the best position to find the defects in the optical surface by detecting in steps of a fixed degree for the incident angle.