In this paper we apply fractional calculus to solve the 3rd order ordinary differential equation of the following form: (z-a)(z-b)(z-c)φ 3+(βz 2+γz+D)φ 2+(α(2β-3α-3)z+αγ+α(α+1)(a+b+c))φ 1+α(α-...In this paper we apply fractional calculus to solve the 3rd order ordinary differential equation of the following form: (z-a)(z-b)(z-c)φ 3+(βz 2+γz+D)φ 2+(α(2β-3α-3)z+αγ+α(α+1)(a+b+c))φ 1+α(α-1)(β-2α-2)φ=f.展开更多
In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1...In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1= d ψ d z and ψ 2= d 2ψ d z 2 are presented.展开更多
In this paper, we investigate the complex oscillation of the higher order differential equation where B0, ...,Bk-1,,F 0 are transcendental meromorpic functions having only finitely many poles. We obtain some precise e...In this paper, we investigate the complex oscillation of the higher order differential equation where B0, ...,Bk-1,,F 0 are transcendental meromorpic functions having only finitely many poles. We obtain some precise estimates of the exponent of convergence of the zero sequence of meromorphic solutions for the above equation.展开更多
This paper investigates solutions of some non-homogeneous linear differential equations, which have non-homogeneous term as the small function of solution. Using the similar method, we can generalize the result of G.G...This paper investigates solutions of some non-homogeneous linear differential equations, which have non-homogeneous term as the small function of solution. Using the similar method, we can generalize the result of G.Gundersen and L.Z.Yang.展开更多
In this paper, we investigate the complex oscillation of the non-homogeneous linear differential equation f(k)+Ak-1f(k-1)+… + A0f= F,where among A k-1,…A0, there exists one Ad being an entire function with infinite ...In this paper, we investigate the complex oscillation of the non-homogeneous linear differential equation f(k)+Ak-1f(k-1)+… + A0f= F,where among A k-1,…A0, there exists one Ad being an entire function with infinite order of growth, and the others Aj(j≠d) satisfy m(r,Aj) = 0{m(r,Ad)}, F≠0 is an entire function, and obtain some precise estimates of the exponent of convergence of the zero-sequence of its solutions.展开更多
An alternative method of solving Lagrange's first-order partial differential equation of the form(a1x +b1y+C1z)p+ (a2x +b2y+c2z)q =a3x +b3y+c3z,where p = Эz/Эx, q = Эz/Эy and ai, bi, ci (i = 1,2,3) a...An alternative method of solving Lagrange's first-order partial differential equation of the form(a1x +b1y+C1z)p+ (a2x +b2y+c2z)q =a3x +b3y+c3z,where p = Эz/Эx, q = Эz/Эy and ai, bi, ci (i = 1,2,3) are all real numbers has been presented here.展开更多
In this paper, we investigate the complex oscillation of the differential equation f<sup>k</sup>+A<sub>k-1</sub>f<sup>k-1</sup>+…+A<sub>O</sub>f=F where A<sub>k-1...In this paper, we investigate the complex oscillation of the differential equation f<sup>k</sup>+A<sub>k-1</sub>f<sup>k-1</sup>+…+A<sub>O</sub>f=F where A<sub>k-1</sub>.…, A<sub>o</sub> F 0 are finite order transcendental entire functions, such that there exists an A<sub>d</sub>(0≤d≤k-1) being dominant in the sense that either it has larger order than any other A<sub>j</sub>(j=0.…. d-l. d+l.…. k-1), or it is the only transcendental function. We obtain some precise estimates of the exponent of convergence of the zero-sequence of solutions to the above equation.展开更多
In this paper,we investigate the complex oscillation of some nonhomogeneous equations with finite order transcendental coefficients.Under some conditions we prove that all solutions of these equations are entire funct...In this paper,we investigate the complex oscillation of some nonhomogeneous equations with finite order transcendental coefficients.Under some conditions we prove that all solutions of these equations are entire functions.Among those solutions, some are of infinite order of growth while some are of finite order of growth.展开更多
文摘In this paper we apply fractional calculus to solve the 3rd order ordinary differential equation of the following form: (z-a)(z-b)(z-c)φ 3+(βz 2+γz+D)φ 2+(α(2β-3α-3)z+αγ+α(α+1)(a+b+c))φ 1+α(α-1)(β-2α-2)φ=f.
文摘In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1= d ψ d z and ψ 2= d 2ψ d z 2 are presented.
文摘In this paper, we investigate the complex oscillation of the higher order differential equation where B0, ...,Bk-1,,F 0 are transcendental meromorpic functions having only finitely many poles. We obtain some precise estimates of the exponent of convergence of the zero sequence of meromorphic solutions for the above equation.
文摘This paper investigates solutions of some non-homogeneous linear differential equations, which have non-homogeneous term as the small function of solution. Using the similar method, we can generalize the result of G.Gundersen and L.Z.Yang.
文摘In this paper, we investigate the complex oscillation of the non-homogeneous linear differential equation f(k)+Ak-1f(k-1)+… + A0f= F,where among A k-1,…A0, there exists one Ad being an entire function with infinite order of growth, and the others Aj(j≠d) satisfy m(r,Aj) = 0{m(r,Ad)}, F≠0 is an entire function, and obtain some precise estimates of the exponent of convergence of the zero-sequence of its solutions.
文摘An alternative method of solving Lagrange's first-order partial differential equation of the form(a1x +b1y+C1z)p+ (a2x +b2y+c2z)q =a3x +b3y+c3z,where p = Эz/Эx, q = Эz/Эy and ai, bi, ci (i = 1,2,3) are all real numbers has been presented here.
基金Project supported by the National Natural Science Foundation of China
文摘In this paper, we investigate the complex oscillation of the differential equation f<sup>k</sup>+A<sub>k-1</sub>f<sup>k-1</sup>+…+A<sub>O</sub>f=F where A<sub>k-1</sub>.…, A<sub>o</sub> F 0 are finite order transcendental entire functions, such that there exists an A<sub>d</sub>(0≤d≤k-1) being dominant in the sense that either it has larger order than any other A<sub>j</sub>(j=0.…. d-l. d+l.…. k-1), or it is the only transcendental function. We obtain some precise estimates of the exponent of convergence of the zero-sequence of solutions to the above equation.
文摘In this paper,we investigate the complex oscillation of some nonhomogeneous equations with finite order transcendental coefficients.Under some conditions we prove that all solutions of these equations are entire functions.Among those solutions, some are of infinite order of growth while some are of finite order of growth.