A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation...A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation response to global change. The process of seed disposal is influenced by wind, which plays a crucial role in determining the distance and probability of seed dispersal. Existing models of seed dispersal consider wind direction but fail to incorporate wind intensity. In this paper, a novel seed disposal model was proposed in this paper, incorporating wind intensity based on relevant references. According to various climatic conditions, including temperate, arid, and tropical regions, three specific regions were selected to establish a wind dispersal model that accurately reflects the density function distribution of dispersal distance. Additionally, dandelions growth is influenced by a multitude of factors, encompassing temperature, humidity, climate, and various environmental variables that necessitate meticulous consideration. Based on Factor Analysis model, which completely considers temperature, precipitation, solar radiation, wind, and land carrying capacity, a conclusion is presented, indicating that the growth of seeds is primarily influenced by plant attributes and climate conditions, with the former exerting a relatively stronger impact. Subsequently, the remaining two plants were chosen based on seed weight, yielding consistent conclusion.展开更多
This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfac...This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.展开更多
Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- a...Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis.展开更多
The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication e...The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication efforts, malaria remains a serious threat, particularly in regions like Africa. This study explores how integrating Gregor’s Type IV theory with Geographic Information Systems (GIS) improves our understanding of disease dynamics, especially Malaria transmission patterns in Uganda. By combining data-driven algorithms, artificial intelligence, and geospatial analysis, the research aims to determine the most reliable predictors of Malaria incident rates and assess the impact of different factors on transmission. Using diverse predictive modeling techniques including Linear Regression, K-Nearest Neighbor, Neural Network, and Random Forest, the study found that;Random Forest model outperformed the others, demonstrating superior predictive accuracy with an R<sup>2</sup> of approximately 0.88 and a Mean Squared Error (MSE) of 0.0534, Antimalarial treatment was identified as the most influential factor, with mosquito net access associated with a significant reduction in incident rates, while higher temperatures correlated with increased rates. Our study concluded that the Random Forest model was effective in predicting malaria incident rates in Uganda and highlighted the significance of climate factors and preventive measures such as mosquito nets and antimalarial drugs. We recommended that districts with malaria hotspots lacking Indoor Residual Spraying (IRS) coverage prioritize its implementation to mitigate incident rates, while those with high malaria rates in 2020 require immediate attention. By advocating for the use of appropriate predictive models, our research emphasized the importance of evidence-based decision-making in malaria control strategies, aiming to reduce transmission rates and save lives.展开更多
The veracity of land evaluation is tightly related to the reasonable weights of land evaluation fac- tors. By mapping qualitative linguistic words into a fine-changeable cloud drops and translating the uncertain facto...The veracity of land evaluation is tightly related to the reasonable weights of land evaluation fac- tors. By mapping qualitative linguistic words into a fine-changeable cloud drops and translating the uncertain factor conditions into quantitative values with the uncertain illation based on cloud model, and then, inte- grating correlation analysis, a new way of figuring out the weight of land evaluation factors is proposed. It may solve the limitations of the conventional ways.展开更多
Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when ...Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.展开更多
In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples...In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples and various pollution sources which were collected in January 2010 in Longyan with inductivity coupled plasma-mass spectrometry(ICP-MS).Then chemical mass balance(CMB) model and factor analysis(FA) method were applied to comparatively study the inorganic components in the sources and receptor samples.The results of factor analysis show that the major sources were road dust,waste incineration and mixed sources which contained automobile exhaust,soil dust/secondary dust and coal dust during the daytime in Longyan City,China.There are two major sources of pollution which are soil dust and mixture sources of automobile exhaust and secondary dust during the night in Longyan.The results of CMB show that the major sources are secondary dust,automobile exhaust and road dust during the daytime in Longyan.The major sources are secondary dust,soil dust and automobile exhaust during the night in Longyan.The results of the two methods are similar to each other and the results will guide us to plan to control the PM10 pollution sources in Longyan.展开更多
A Bayesian network (BN) model was developed to predict susceptibility to PWD(Pine Wilt Disease). The distribution of PWD was identified using QuickBird and unmanned aerial vehicle (UAV) images taken at different times...A Bayesian network (BN) model was developed to predict susceptibility to PWD(Pine Wilt Disease). The distribution of PWD was identified using QuickBird and unmanned aerial vehicle (UAV) images taken at different times. Seven factors that influence the distribution of PWD were extracted from the QuickBird images and were used as the independent variables. The results showed that the BN model predicted PWD with high accuracy. In a sensitivity analysis, elevation (EL), the normal differential vegetation index (NDVI), the distance to settlements (DS) and the distance to roads (DR) were strongly associated with PWD prevalence, and slope (SL) exhibited the weakest association with PWD prevalence. The study showed that BN is an effective tool for modeling PWD prevalence and quantifying the impact of various factors.展开更多
[Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was es...[Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was established firstly,then the impacts of population,economy and technology on carbon emissions from 2000 to 2009 were analyzed econometrically by using the principal component analysis method.Finally,some corresponding countermeasures to reduce carbon dioxide emissions were put forward.[Result]At present,population scale had the greatest influence on carbon emissions in Sichuan Province,then energy consumption per industrial added value and the proportion of industrial added value to GDP.In addition,the influence of population scale on carbon emissions was still greater than that of population structure,and technical factor also has certain explanatory power on carbon emissions.Some countermeasures,like controlling population growth,advocating low-carbon life style and consumption model,paying more attention to the strategic adjustment of industrial structure to gradually reduce the proportion of high-carbon industries,encouraging energy consumption and emissions reduction plus scientific and technological innovation in a new energy technology filed,could be adopted to reduce carbon dioxide emissions,so as to adjust to the development of low-carbon economy in Sichuan Province.[Conclusion]The research could provide references for the establishment of policies for reducing carbon emissions.展开更多
This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and laten...This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and latent variables,could be used to facilitate researchers’understandings of the underlying constructs or hypothetical factors and their magnitude of effect that constitute a complex system.This enhanced understanding,in turn,can help emphasize the important factors to improve mine safety.The most commonly used techniques include the exploratory factor analysis(EFA),the confirmatory factor analysis(CFA)and the structural equation model with latent variables(SEM).A critical comparison of the three techniques regarding mine safety is provided.Possible applications of latent variable modeling in mining engineering are explored.In this scope,relevant research papers were reviewed.They suggest that the application of such methods could prove useful in mine accident and safety research.Application of latent variables analysis in cognitive work analysis was proposed to improve the understanding of human-work relationships in mining operations.展开更多
The impacts of changes of various parameters and stochastic factors on water quality models were studied. The impact of deviation of the degradation coefficient on the model results was investigated. The degradation c...The impacts of changes of various parameters and stochastic factors on water quality models were studied. The impact of deviation of the degradation coefficient on the model results was investigated. The degradation coefficient was decomposed into the exact part and the deviation part, and the relationship between the errors of the water quality model results and the deviation of the degradation coefficient was derived. The impact of changes in the initial concentration on the model results was discussed. A linear relationship between the initial concentration changes and errors in the model results was obtained, and relevant recommendations to the water quality management were made based on the results. The impacts of stochastic factors in the water environment on the water quality model were analyzed. A variety of random factors which may affect the water quality conditions were attributed to one stochastic factor and it was further assumed to be the white noise. The solutions to the water quality model including the stochastic process were obtained by solving the stochastic differential equation. Simulation results showed that the decay trend of the concentration of the solute would not be changed, and that the results would fluctuate around the expectation centered at each corresponding displacement展开更多
BACKGROUND Gallbladder cancer(GBC)is the most common malignant tumor of the biliary system,and is often undetected until advanced stages,making curative surgery unfeasible for many patients.Curative surgery remains th...BACKGROUND Gallbladder cancer(GBC)is the most common malignant tumor of the biliary system,and is often undetected until advanced stages,making curative surgery unfeasible for many patients.Curative surgery remains the only option for long-term survival.Accurate postsurgical prognosis is crucial for effective treatment planning.tumor-node-metastasis staging,which focuses on tumor infiltration,lymph node metastasis,and distant metastasis,limits the accuracy of prognosis.Nomograms offer a more comprehensive and personalized approach by visually analyzing a broader range of prognostic factors,enhancing the precision of treatment planning for patients with GBC.AIM A retrospective study analyzed the clinical and pathological data of 93 patients who underwent radical surgery for GBC at Peking University People's Hospital from January 2015 to December 2020.Kaplan-Meier analysis was used to calculate the 1-,2-and 3-year survival rates.The log-rank test was used to evaluate factors impacting prognosis,with survival curves plotted for significant variables.Single-factor analysis revealed statistically significant differences,and multivariate Cox regression identified independent prognostic factors.A nomogram was developed and validated with receiver operating characteristic curves and calibration curves.Among 93 patients who underwent radical surgery for GBC,30 patients survived,accounting for 32.26%of the sample,with a median survival time of 38 months.The 1-year,2-year,and 3-year survival rates were 83.87%,68.82%,and 53.57%,respectively.Univariate analysis revealed that carbohydrate antigen 19-9 expre-ssion,T stage,lymph node metastasis,histological differentiation,surgical margins,and invasion of the liver,ex-trahepatic bile duct,nerves,and vessels(P≤0.001)significantly impacted patient prognosis after curative surgery.Multivariate Cox regression identified lymph node metastasis(P=0.03),histological differentiation(P<0.05),nerve invasion(P=0.036),and extrahepatic bile duct invasion(P=0.014)as independent risk factors.A nomogram model with a concordance index of 0.838 was developed.Internal validation confirmed the model's consistency in predicting the 1-year,2-year,and 3-year survival rates.CONCLUSION Lymph node metastasis,tumor differentiation,extrahepatic bile duct invasion,and perineural invasion are independent risk factors.A nomogram based on these factors can be used to personalize and improve treatment strategies.展开更多
The interception probability of a single missile is the basis for combat plan design and weapon performance evaluation,while its influencing factors are complex and mutually coupled.Existing calculation methods have v...The interception probability of a single missile is the basis for combat plan design and weapon performance evaluation,while its influencing factors are complex and mutually coupled.Existing calculation methods have very limited analysis of the influence mechanism of influencing factors,and none of them has analyzed the influence of the guidance law.This paper considers the influencing factors of both the interceptor and the target more comprehensively.Interceptor parameters include speed,guidance law,guidance error,fuze error,and fragment killing ability,while target performance includes speed,maneuverability,and vulnerability.In this paper,an interception model is established,Monte Carlo simulation is carried out,and the influence mechanism of each factor is analyzed based on the model and simulation results.Finally,this paper proposes a classification-regression neural network to quickly estimate the interception probability based on the value of influencing factors.The proposed method reduces the interference of invalid interception data to valid data,so its prediction accuracy is significantly better than that of pure regression neural networks.展开更多
A two parameter mathematical model was developed to find the concentration for immobilized enzyme systems in porous spherical particles. This model contains a non-linear term related to reversible Michaelies-Menten ki...A two parameter mathematical model was developed to find the concentration for immobilized enzyme systems in porous spherical particles. This model contains a non-linear term related to reversible Michaelies-Menten kinetics. Analytical expression pertaining to the substrate concentration was reported for all possible values of Thiele module φ and α . In this work, we report the theoretically evaluated steady-state effectiveness factor for immobilized enzyme systems in porous spherical particles. These analytical results were found to be in good agreement with numerical results. Moreover, herein we employ new “Homotopy analysis method” (HAM) to solve non-linear reaction/diffusion equation.展开更多
Egypt suffers from the impacts of climate change. Adaption plans should solve the shortage in water resources and increase the use of renewable energy. Detailed data on rainfall as non conventional water and detailed ...Egypt suffers from the impacts of climate change. Adaption plans should solve the shortage in water resources and increase the use of renewable energy. Detailed data on rainfall as non conventional water and detailed data on potential renewable energy are important. The added value of this research is to investigate the suitability of satellite data locally in North Sinai in Egypt. The Tropical Rainfall Measuring Mission (TRMM) satellites and available data from ground rain gauges are studied at North Sinai of Egypt. Local multiplication factors and correlation equations on a monthly basis were developed based on short term historical data. General equation based on short term data was developed to enhance TRMM data for the rainy season to minimize spatial and temporal errors. This equation would be very useful, especially in the ungauged areas in North Sinai to adjust TRMM rainfall data. TRMM data are spatially distributed, so it enhances the hydrology models for runoff estimation. This runoff could be used as non conventional water resource. The runoff was estimated in the RasSudr area in the 2010 storm to be 3.6 (m3/s). The hydropower of this runoff was estimated and ranged from 15,135 to 57,352 (kWh). The solar energy is studied from (NASA) satellite data. The monthly averaged solar energy was estimated to get possible generated power from the solar panel at locations of rainfall ground stations. The generated solar energy would supply self-sufficient energy for ground stations measuring instruments rather than batteries. The results show that a small solar panel project of 200 (m2) could safe electric network power by generating about 20,385 (kWh/year). The results of this study could help in enhancing adapting plans for climate change and runoff estimation model that needs grid data, especially in the area lacking ground data.展开更多
In recent years,the real estate industry has achieved significant progress,driving the development of related sectors and playing a crucial role in economic growth.However,rapid real estate market expansion has led to...In recent years,the real estate industry has achieved significant progress,driving the development of related sectors and playing a crucial role in economic growth.However,rapid real estate market expansion has led to challenges,particularly concerning housing prices,which have drawn widespread societal attention.This article explores the theories of housing prices,analyzes factors influencing them,and conducts an empirical investigation of the impact of representative factors on ordinary residential prices.Using regression analysis and the entropy weight method,a mathematical model was developed to examine how various factors affect housing prices.展开更多
Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analys...Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.展开更多
Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts itera...Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor(RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models.展开更多
In this article, the industrial process of CO_2 capture using monoethanolamine as an aqueous solvent was probed carefully from the mass transfer viewpoint. The simulation of this process was done using Rate-Base model...In this article, the industrial process of CO_2 capture using monoethanolamine as an aqueous solvent was probed carefully from the mass transfer viewpoint. The simulation of this process was done using Rate-Base model, based on two-film theory. The results were validated against real plant data. Compared to the operational unit, the error of calculating absorption percentage and CO_2 loading was estimated around 2%. The liquid temperature profiles calculated by the model agree well with the real temperature along the absorption tower, emphasizing the accuracy of this model. Operational sensitivity analysis of absorption tower was also done with the aim of determining sensitive parameters for the optimized design of absorption tower and optimized operational conditions. Hence,the sensitivity analysis was done for the flow rate of gas, the flow rate of solvent, flue gas temperature, inlet solvent temperature, CO_2 concentration in the flue gas, loading of inlet solvent, and MEA concentration in the solvent. CO_2 absorption percentage, the profile of loading, liquid temperature profile and finally profile of CO_2 mole fraction in gas phase along the absorption tower were studied. To elaborate mass transfer phenomena, enhancement factor, interfacial area, molar flux and liquid hold up were probed. The results show that regarding the CO_2 absorption, the most important parameter was the gas flow rate. Comparing liquid temperature profiles showed that the most important parameter affecting the temperature of the rich solvent was MEA concentration.展开更多
文摘A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation response to global change. The process of seed disposal is influenced by wind, which plays a crucial role in determining the distance and probability of seed dispersal. Existing models of seed dispersal consider wind direction but fail to incorporate wind intensity. In this paper, a novel seed disposal model was proposed in this paper, incorporating wind intensity based on relevant references. According to various climatic conditions, including temperate, arid, and tropical regions, three specific regions were selected to establish a wind dispersal model that accurately reflects the density function distribution of dispersal distance. Additionally, dandelions growth is influenced by a multitude of factors, encompassing temperature, humidity, climate, and various environmental variables that necessitate meticulous consideration. Based on Factor Analysis model, which completely considers temperature, precipitation, solar radiation, wind, and land carrying capacity, a conclusion is presented, indicating that the growth of seeds is primarily influenced by plant attributes and climate conditions, with the former exerting a relatively stronger impact. Subsequently, the remaining two plants were chosen based on seed weight, yielding consistent conclusion.
文摘This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.
文摘Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis.
文摘The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication efforts, malaria remains a serious threat, particularly in regions like Africa. This study explores how integrating Gregor’s Type IV theory with Geographic Information Systems (GIS) improves our understanding of disease dynamics, especially Malaria transmission patterns in Uganda. By combining data-driven algorithms, artificial intelligence, and geospatial analysis, the research aims to determine the most reliable predictors of Malaria incident rates and assess the impact of different factors on transmission. Using diverse predictive modeling techniques including Linear Regression, K-Nearest Neighbor, Neural Network, and Random Forest, the study found that;Random Forest model outperformed the others, demonstrating superior predictive accuracy with an R<sup>2</sup> of approximately 0.88 and a Mean Squared Error (MSE) of 0.0534, Antimalarial treatment was identified as the most influential factor, with mosquito net access associated with a significant reduction in incident rates, while higher temperatures correlated with increased rates. Our study concluded that the Random Forest model was effective in predicting malaria incident rates in Uganda and highlighted the significance of climate factors and preventive measures such as mosquito nets and antimalarial drugs. We recommended that districts with malaria hotspots lacking Indoor Residual Spraying (IRS) coverage prioritize its implementation to mitigate incident rates, while those with high malaria rates in 2020 require immediate attention. By advocating for the use of appropriate predictive models, our research emphasized the importance of evidence-based decision-making in malaria control strategies, aiming to reduce transmission rates and save lives.
文摘The veracity of land evaluation is tightly related to the reasonable weights of land evaluation fac- tors. By mapping qualitative linguistic words into a fine-changeable cloud drops and translating the uncertain factor conditions into quantitative values with the uncertain illation based on cloud model, and then, inte- grating correlation analysis, a new way of figuring out the weight of land evaluation factors is proposed. It may solve the limitations of the conventional ways.
基金supported by the National Nature Science Foundation of China(Grant No.71401052)the National Social Science Foundation of China(Grant No.17BGL156)the Key Project of the National Social Science Foundation of China(Grant No.14AZD024)
文摘Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.
基金Supported by the Natural Basic Research Program of China(No.2005CB422207)the Fund of Eco-enviromental Impacts and Protection in Devoloping and Utilizing of Oil-shale Resources(No.OSR-01-06)
文摘In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples and various pollution sources which were collected in January 2010 in Longyan with inductivity coupled plasma-mass spectrometry(ICP-MS).Then chemical mass balance(CMB) model and factor analysis(FA) method were applied to comparatively study the inorganic components in the sources and receptor samples.The results of factor analysis show that the major sources were road dust,waste incineration and mixed sources which contained automobile exhaust,soil dust/secondary dust and coal dust during the daytime in Longyan City,China.There are two major sources of pollution which are soil dust and mixture sources of automobile exhaust and secondary dust during the night in Longyan.The results of CMB show that the major sources are secondary dust,automobile exhaust and road dust during the daytime in Longyan.The major sources are secondary dust,soil dust and automobile exhaust during the night in Longyan.The results of the two methods are similar to each other and the results will guide us to plan to control the PM10 pollution sources in Longyan.
文摘A Bayesian network (BN) model was developed to predict susceptibility to PWD(Pine Wilt Disease). The distribution of PWD was identified using QuickBird and unmanned aerial vehicle (UAV) images taken at different times. Seven factors that influence the distribution of PWD were extracted from the QuickBird images and were used as the independent variables. The results showed that the BN model predicted PWD with high accuracy. In a sensitivity analysis, elevation (EL), the normal differential vegetation index (NDVI), the distance to settlements (DS) and the distance to roads (DR) were strongly associated with PWD prevalence, and slope (SL) exhibited the weakest association with PWD prevalence. The study showed that BN is an effective tool for modeling PWD prevalence and quantifying the impact of various factors.
文摘[Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was established firstly,then the impacts of population,economy and technology on carbon emissions from 2000 to 2009 were analyzed econometrically by using the principal component analysis method.Finally,some corresponding countermeasures to reduce carbon dioxide emissions were put forward.[Result]At present,population scale had the greatest influence on carbon emissions in Sichuan Province,then energy consumption per industrial added value and the proportion of industrial added value to GDP.In addition,the influence of population scale on carbon emissions was still greater than that of population structure,and technical factor also has certain explanatory power on carbon emissions.Some countermeasures,like controlling population growth,advocating low-carbon life style and consumption model,paying more attention to the strategic adjustment of industrial structure to gradually reduce the proportion of high-carbon industries,encouraging energy consumption and emissions reduction plus scientific and technological innovation in a new energy technology filed,could be adopted to reduce carbon dioxide emissions,so as to adjust to the development of low-carbon economy in Sichuan Province.[Conclusion]The research could provide references for the establishment of policies for reducing carbon emissions.
基金Natural Sciences and Engineering Research Council of Canada(NSERC)(ID:236482)for supporting this research
文摘This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and latent variables,could be used to facilitate researchers’understandings of the underlying constructs or hypothetical factors and their magnitude of effect that constitute a complex system.This enhanced understanding,in turn,can help emphasize the important factors to improve mine safety.The most commonly used techniques include the exploratory factor analysis(EFA),the confirmatory factor analysis(CFA)and the structural equation model with latent variables(SEM).A critical comparison of the three techniques regarding mine safety is provided.Possible applications of latent variable modeling in mining engineering are explored.In this scope,relevant research papers were reviewed.They suggest that the application of such methods could prove useful in mine accident and safety research.Application of latent variables analysis in cognitive work analysis was proposed to improve the understanding of human-work relationships in mining operations.
文摘The impacts of changes of various parameters and stochastic factors on water quality models were studied. The impact of deviation of the degradation coefficient on the model results was investigated. The degradation coefficient was decomposed into the exact part and the deviation part, and the relationship between the errors of the water quality model results and the deviation of the degradation coefficient was derived. The impact of changes in the initial concentration on the model results was discussed. A linear relationship between the initial concentration changes and errors in the model results was obtained, and relevant recommendations to the water quality management were made based on the results. The impacts of stochastic factors in the water environment on the water quality model were analyzed. A variety of random factors which may affect the water quality conditions were attributed to one stochastic factor and it was further assumed to be the white noise. The solutions to the water quality model including the stochastic process were obtained by solving the stochastic differential equation. Simulation results showed that the decay trend of the concentration of the solute would not be changed, and that the results would fluctuate around the expectation centered at each corresponding displacement
基金Supported by Xiao-Ping Chen Foundation for The Development of Science and Technology of Hubei Province,No.CXPJJH122002-061.
文摘BACKGROUND Gallbladder cancer(GBC)is the most common malignant tumor of the biliary system,and is often undetected until advanced stages,making curative surgery unfeasible for many patients.Curative surgery remains the only option for long-term survival.Accurate postsurgical prognosis is crucial for effective treatment planning.tumor-node-metastasis staging,which focuses on tumor infiltration,lymph node metastasis,and distant metastasis,limits the accuracy of prognosis.Nomograms offer a more comprehensive and personalized approach by visually analyzing a broader range of prognostic factors,enhancing the precision of treatment planning for patients with GBC.AIM A retrospective study analyzed the clinical and pathological data of 93 patients who underwent radical surgery for GBC at Peking University People's Hospital from January 2015 to December 2020.Kaplan-Meier analysis was used to calculate the 1-,2-and 3-year survival rates.The log-rank test was used to evaluate factors impacting prognosis,with survival curves plotted for significant variables.Single-factor analysis revealed statistically significant differences,and multivariate Cox regression identified independent prognostic factors.A nomogram was developed and validated with receiver operating characteristic curves and calibration curves.Among 93 patients who underwent radical surgery for GBC,30 patients survived,accounting for 32.26%of the sample,with a median survival time of 38 months.The 1-year,2-year,and 3-year survival rates were 83.87%,68.82%,and 53.57%,respectively.Univariate analysis revealed that carbohydrate antigen 19-9 expre-ssion,T stage,lymph node metastasis,histological differentiation,surgical margins,and invasion of the liver,ex-trahepatic bile duct,nerves,and vessels(P≤0.001)significantly impacted patient prognosis after curative surgery.Multivariate Cox regression identified lymph node metastasis(P=0.03),histological differentiation(P<0.05),nerve invasion(P=0.036),and extrahepatic bile duct invasion(P=0.014)as independent risk factors.A nomogram model with a concordance index of 0.838 was developed.Internal validation confirmed the model's consistency in predicting the 1-year,2-year,and 3-year survival rates.CONCLUSION Lymph node metastasis,tumor differentiation,extrahepatic bile duct invasion,and perineural invasion are independent risk factors.A nomogram based on these factors can be used to personalize and improve treatment strategies.
基金supported by the Foundation Strengthening Program Technology Field Foundation(2020-JCJQ-JJ-132)。
文摘The interception probability of a single missile is the basis for combat plan design and weapon performance evaluation,while its influencing factors are complex and mutually coupled.Existing calculation methods have very limited analysis of the influence mechanism of influencing factors,and none of them has analyzed the influence of the guidance law.This paper considers the influencing factors of both the interceptor and the target more comprehensively.Interceptor parameters include speed,guidance law,guidance error,fuze error,and fragment killing ability,while target performance includes speed,maneuverability,and vulnerability.In this paper,an interception model is established,Monte Carlo simulation is carried out,and the influence mechanism of each factor is analyzed based on the model and simulation results.Finally,this paper proposes a classification-regression neural network to quickly estimate the interception probability based on the value of influencing factors.The proposed method reduces the interference of invalid interception data to valid data,so its prediction accuracy is significantly better than that of pure regression neural networks.
文摘A two parameter mathematical model was developed to find the concentration for immobilized enzyme systems in porous spherical particles. This model contains a non-linear term related to reversible Michaelies-Menten kinetics. Analytical expression pertaining to the substrate concentration was reported for all possible values of Thiele module φ and α . In this work, we report the theoretically evaluated steady-state effectiveness factor for immobilized enzyme systems in porous spherical particles. These analytical results were found to be in good agreement with numerical results. Moreover, herein we employ new “Homotopy analysis method” (HAM) to solve non-linear reaction/diffusion equation.
文摘Egypt suffers from the impacts of climate change. Adaption plans should solve the shortage in water resources and increase the use of renewable energy. Detailed data on rainfall as non conventional water and detailed data on potential renewable energy are important. The added value of this research is to investigate the suitability of satellite data locally in North Sinai in Egypt. The Tropical Rainfall Measuring Mission (TRMM) satellites and available data from ground rain gauges are studied at North Sinai of Egypt. Local multiplication factors and correlation equations on a monthly basis were developed based on short term historical data. General equation based on short term data was developed to enhance TRMM data for the rainy season to minimize spatial and temporal errors. This equation would be very useful, especially in the ungauged areas in North Sinai to adjust TRMM rainfall data. TRMM data are spatially distributed, so it enhances the hydrology models for runoff estimation. This runoff could be used as non conventional water resource. The runoff was estimated in the RasSudr area in the 2010 storm to be 3.6 (m3/s). The hydropower of this runoff was estimated and ranged from 15,135 to 57,352 (kWh). The solar energy is studied from (NASA) satellite data. The monthly averaged solar energy was estimated to get possible generated power from the solar panel at locations of rainfall ground stations. The generated solar energy would supply self-sufficient energy for ground stations measuring instruments rather than batteries. The results show that a small solar panel project of 200 (m2) could safe electric network power by generating about 20,385 (kWh/year). The results of this study could help in enhancing adapting plans for climate change and runoff estimation model that needs grid data, especially in the area lacking ground data.
文摘In recent years,the real estate industry has achieved significant progress,driving the development of related sectors and playing a crucial role in economic growth.However,rapid real estate market expansion has led to challenges,particularly concerning housing prices,which have drawn widespread societal attention.This article explores the theories of housing prices,analyzes factors influencing them,and conducts an empirical investigation of the impact of representative factors on ordinary residential prices.Using regression analysis and the entropy weight method,a mathematical model was developed to examine how various factors affect housing prices.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ01A13-2) supported by the National Key Technologies R & D Program of China
文摘Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.
基金supported in part by the National Natural Science Foundation of China (6177249391646114)+1 种基金Chongqing research program of technology innovation and application (cstc2017rgzn-zdyfX0020)in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciences
文摘Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor(RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models.
文摘In this article, the industrial process of CO_2 capture using monoethanolamine as an aqueous solvent was probed carefully from the mass transfer viewpoint. The simulation of this process was done using Rate-Base model, based on two-film theory. The results were validated against real plant data. Compared to the operational unit, the error of calculating absorption percentage and CO_2 loading was estimated around 2%. The liquid temperature profiles calculated by the model agree well with the real temperature along the absorption tower, emphasizing the accuracy of this model. Operational sensitivity analysis of absorption tower was also done with the aim of determining sensitive parameters for the optimized design of absorption tower and optimized operational conditions. Hence,the sensitivity analysis was done for the flow rate of gas, the flow rate of solvent, flue gas temperature, inlet solvent temperature, CO_2 concentration in the flue gas, loading of inlet solvent, and MEA concentration in the solvent. CO_2 absorption percentage, the profile of loading, liquid temperature profile and finally profile of CO_2 mole fraction in gas phase along the absorption tower were studied. To elaborate mass transfer phenomena, enhancement factor, interfacial area, molar flux and liquid hold up were probed. The results show that regarding the CO_2 absorption, the most important parameter was the gas flow rate. Comparing liquid temperature profiles showed that the most important parameter affecting the temperature of the rich solvent was MEA concentration.