Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ...Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value ...The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value for promoting gas hydrate formation and ensuring the flow safe of natural gas hydrate slurry.The experimental section was made of plexiglass pipe and the experimental medium was air and water.The flow pattern of the gas-liquid two-phase swirl flow in the horizontal pipe was divided,according to a high-definition camera and the overall characteristics of the gas-liquid interface.The flow pattern map of the gas-liquid two-phase swirl flow in a horizontal pipe was studied.The influence of the flow velocity and vane parameters on pressure drop was investigated.Two types of gas-liquid two-phase swirl flow pressure drop models was established.The homogeneous-phase and split-phase pressure drop models have good prediction on swirl bubble flow,swirl dispersed flow,swirl annular flow and swirl stratified flow,and the predictive error band is not more than 20%.展开更多
The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cr...The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.展开更多
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr...A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.展开更多
In this paper, the numerical simulations have been carried out to evaluate the two-phase pressure drop and liquid distribution in screw channel. The numerical models are validated against the present experimental data...In this paper, the numerical simulations have been carried out to evaluate the two-phase pressure drop and liquid distribution in screw channel. The numerical models are validated against the present experimental data with statistical accuracy. The effects of pitch circle diameter(PCD), inlet velocity and inlet sectional liquid holdup on the pressure drop and liquid distribution characteristics in the screw channel are illustrated. It is found that decreasing the PCD and increasing the inlet sectional liquid holdup can increase the liquid holdup on the outer side in screw channel. The PCD and the inlet sectional liquid holdup need to be considered in evaluating the two-phase frictional pressure drop per unit length in the screw channel. The PCD has an effect on the development of the average pressure in the various cross sections, and the inlet sectional liquid holdup has no visible impact on the changing process of the pressure drop in the screw channel. The correlation developed predicts the two-phase frictional pressure drop in the screw channel with great statistical accuracy.展开更多
The accurate prediction of the pressure distribution of highly viscous fluids in wellbores and pipelines is of great significance for heavy oil production and transportation.The flow behavior of high-viscosity fluids ...The accurate prediction of the pressure distribution of highly viscous fluids in wellbores and pipelines is of great significance for heavy oil production and transportation.The flow behavior of high-viscosity fluids is quite different with respect to that of low-viscosity fluids.Currently,the performances of existing pressure-drop models seem to be relatively limited when they are applied to high-viscosity fluids.In this study,a gas-liquid two-phase flow experiment has been carried out using a 60 mm ID horizontal pipe with air and white oil.The experimental results indicate that viscosity exerts a significant influence on the liquid holdup and pressure drop.At the same gas and liquid volume,both the liquid holdup and pressure drop increase with an increase in the viscosity.Combining two existing models,a modified pressure drop method is developed,which is applicable to horizontal pipes for different viscosities and does not depend on the flow pattern.This new method displays a high accuracy in predicting the new experimental data presented here and other published data in literature.展开更多
An experiment was carried out to investigate the relation of the maximum velocity of air passing through narrowest passage, mass flux of spray water in one square meter in one hour and the pressure drop of tube bundle...An experiment was carried out to investigate the relation of the maximum velocity of air passing through narrowest passage, mass flux of spray water in one square meter in one hour and the pressure drop of tube bundles. Twelve equations were obtained for the relation. The results show that the pressure drop of the tube bundles increases with increase of the maximum velocity of air and the mass flux of spray water. Comparing the pressure drop of the bare tube bundles with that of the film-enhanced tube bundles, it is found that the pressure drop of the film-enhanced tube bundles is lower about 11% and the surface roughness of the film-enhanced plates is a main factor that influences the pressure drop. The data and method obtained in the paper can be used to compute the pressure drop of the film-enhanced tube bundles and is helpful for selection of fan.展开更多
The water-drop-shaped pressure hull has a good streamline,which has good application prospect in the underwater observatory.Therefore,this study conducted analytical,experimental and numerical investigation of the buc...The water-drop-shaped pressure hull has a good streamline,which has good application prospect in the underwater observatory.Therefore,this study conducted analytical,experimental and numerical investigation of the buckling properties of water-drop-shaped pressure hulls under hydrostatic pressure.A water-drop experiment was conducted to design water-drop-shaped pressure hulls with various shape indices.The critical loads for the water-drop-shaped pressure hulls were resolved by using Mushtari’s formula.Several numerical simulations including linear buckling analysis and nonlinear buckling analysis including eigenmode imperfections were performed.The results indicated that the critical loads resolved by Mushtari's formula were in good agreement with the linear buckling loads from the numerical simulations.This formula can be extended to estimate the buckling capacity of water-drop-shaped pressure hulls.In addition,three groups of pressure hulls were fabricated by using stereolithography,a rapid prototyping technique.Subsequently,three groups of the pressure hulls were subjected to ultrasonic measurements,optical scanning,hydrostatic testing and numerical analysis.The experimental results were consistent with the numerical results.The results indicate that the sharp end of the water-drop-shaped pressure hulls exhibited instability compared with the blunt end.This paper provides a new solution to the limitations of experimental studies on the water-drop-shaped pressure hulls as well as a new configuration and evaluation method for underwater observatories.展开更多
A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were dev...A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were developed based on the well liquid flow equation. FBHPs during the production were predicted by considering the effect of entrained liquid on gravitational gradients. Comparison of calculated BHPs by Cullender-Smith and proposed method was also studied. The results show that the proposed algorithm gives the desired accuracy of calculating BHPs in the low- productivity and low-pressure CBM wells. FBHP is resulted from the combined action of wellhead pressure, gas column pressure and fluid column pressure. Variation of kinetic energy term, compressibility and friction factors with depth increments and liquid holdup with velocity should be considered to simulate the real BHPs adequately. BHP is a function of depth of each column segment. The small errors of less than 1.5% between the calculated and measured values are obtained with each segment within 25 m. Adjusting BHPs can effectively increase production pressure drop, which is beneficial to CBM desorption and enhances reservoir productivity. The increment of pressure drop from 5.37 MPa2 to 8.66 MPa2 leads to an increase of CBM production from 3270 m3/d to 6700 m3/d and is attributed to a decrease in BHP from 2.25 MPa to 1.33 MPa.展开更多
Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid...Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid velocities.The flow rates in the two branches were measured accurately to determine how the two considered phases distribute in the two outlets.The experimental results have shown that when the two outlet pressures are asymmetric,the two-phase flow always tends to flow into the outlet which has a lower pressure.As the inlet liquid velocity increases,however,the two-phase flow gradually tends to split evenly.Compared with the experiment results,the pressure difference between the two outlets can be determined more accurately by means of numerical simulation.The trends of experimental results and simulations are in very good agreement.展开更多
A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related n...A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related numerical solutions are obtained using a finite difference method.The correctness of the method is demonstrated using a two-dimensional inhomogeneous low permeability example.Then,the differences in the cumulative oil and water production are investigated for different starting water saturations.It is shown that when the initial water saturation grows,the water content of the block continues to rise and the cumulative oil production gradually decreases.展开更多
While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct ...While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct numerical simulation(DNS).Only a few studies have sought to numerically solve Navier—Stokes equations with level-set(LS)or volume-of-fluid(VoF)methods,each of which has constraints in terms of meniscus dynamics for various flow velocities in the control volume(CV)domain.The Shan—Chen multiphase multicomponent lattice Boltzmann method(SC-LBM)has a fundamental mechanism to separate immiscible fluid phases in the density domain without these limitations.Therefore,this study applied it to explore two-phase displacement in a single representative elementary volume(REV)of two-dimensional(2D)porous media.As a continuation of a previous investigation into one-step inflow/outflow in 2D porous media,this work seeks to identify dynamic nonequilibrium effects on capillary pressure—saturation relationship(P_(c)—S)for quasi-steady-state flow and multistep inflow/outflow under various pressure boundary conditions.The simulation outcomes show that P_(c),S and specific interfacial area(a_(nw))had multistep-wise dynamic effects corresponding to the multistep-wise pressure boundary conditions.With finer adjustments to the increase in pressure over more steps,dynamic nonequilibrium effects were significantly alleviated and even finally disappeared to achieve quasisteady-state inflow/outflow conditions.Furthermore,triangular wave-formed pressure boundary conditions were applied in different periods to investigate dynamic nonequilibrium effects for hysteretical Pc—S.The results showed overshoot and undershoot of P_(c)to S in loops of the nonequilibrium hysteresis.In addition,the flow regimes of multistep-wise dynamic effects were analyzed in terms of Reynolds and capillary numbers(Re and Ca).The analysis of REV-scale flow regimes showed higher Re(1<Re<10)for more significant dynamic nonequilibrium effects.This indicates that inertia is critical for transient twophase flow in porous media under dynamic nonequilibrium conditions.展开更多
An experimental study of the extent of axial backmixing in both gas and liquid phases was conducted in a 150 mm ID column packed with Mellapak 250Y corrugated structured packing. The column was operated at pressures r...An experimental study of the extent of axial backmixing in both gas and liquid phases was conducted in a 150 mm ID column packed with Mellapak 250Y corrugated structured packing. The column was operated at pressures ranging from 0.3 MPa to 2.0MPa with nitrogen and water flowing countercurrently through the packing. The amount of axial backmixing was experimentally evaluated by the pulse response techniques using hydrogen in gas phase and an aqueous solution of NaCl in liquid phase as inert tracers. The response of the tracer was monitored by means of thermal conductivity in the gas phase and electrical conductance in the liquid phase. The experimentally determined residence time distribution (RTD) curves were interpreted in terms of the diffusion-type modei. The results indicated that the axial backmixing in the gas increased notably with gas flowrate and slightly with operating pressure and liquid flowrate. The liquid-phase axial backmixing was an increasing function of both gas and liquid flowrates and insensitive to pressure. Various correlations were developed for reproducing the experimental mixing data. The agreement between experimental and correlated data appeared to be acceptable and within ±20% of difference.展开更多
An open-source computational fluid dynamics(CFD)code named OpenFOAM is used to validate the flow field characteristics(flow patterns and pressure drop)around a single cylinder.Results show that OpenFOAM is suitabl...An open-source computational fluid dynamics(CFD)code named OpenFOAM is used to validate the flow field characteristics(flow patterns and pressure drop)around a single cylinder.Results show that OpenFOAM is suitable for simulating the low Reynolds number flow and Shaw's analytical expression is one of the solutions to Stokes' paradox.Experiments are performed on fibrous media and OpenFOAM simulation is carried out using the Tronville-Rivers two-dimensional random fiber model in terms of the characteristics of pressure drop.It is shown that the Kuwabara model predicts the pressure drop of fibrous filter media more accurately than the Happel model,and the experimental pressure drop is between simulated pressure drops with both non-slip and full-slip boundaries on fiber surfaces.展开更多
This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression an...This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR meta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the lit- erature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters.展开更多
Under the condition of steady state, the pressure drop of coolant is mainly caused by friction along the cable. In the CICC (cable-in-conduit-conductor), helium flow within the conductor consists of two parallel inter...Under the condition of steady state, the pressure drop of coolant is mainly caused by friction along the cable. In the CICC (cable-in-conduit-conductor), helium flow within the conductor consists of two parallel interconnected tubes. The velocity distribution has some differece between the central channel and conductor space. The region of Reynolds number is from 103 to 106. This paper describes the calculation of pressure drop of HT-7U CICC at various mass flows. It is assumed that the coolant flows in two parallel, rough tubes during the calculation.展开更多
A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single a...A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single annular flow channel,a single radial flow channel and an orifice flow channel through structure design.The finite element modelling and simulation analysis of the MR valve was carried out using ANSYS/Emag software to investigate the changes of the magnetic flux density and yield stress along the fluid flow paths under the four different radial resistance gaps.Moreover,the experimental tests were also conducted to evaluate the pressure drop,showing that the proposed MR valve has significantly improved its pressure drop at 0.5 mm width of the radial resistance gap when the annular resistance gap is fixed at 1 mm.展开更多
A packing-flotation column was proposed to optimize the flotation environment A research system was es- tablished using a 100 mm diameter cyclonic micro-bubble flotation column to study fluid properties. Dry-plate and...A packing-flotation column was proposed to optimize the flotation environment A research system was es- tablished using a 100 mm diameter cyclonic micro-bubble flotation column to study fluid properties. Dry-plate and wet- plate pressure drops were studied and the corresponding pressure drop equations developed. The results show that the dry-plate pressure drop of the packing cyclonic micro-bubble flotation column is 10–15 times less than that of the chemical tower, which is principally shown in its relatively small resistance coefficient, ξ ≈0.0207. The wet-plate pressure drop is 2–3 times higher than that of the chemical tower, which is largely caused by the separation materials and characteristics of the equipment. With flotation, the greater the pressure drop, the better the flotation environment.展开更多
基金the support of the Opening Fund of State Key Laboratory of Multiphase Flow in Power Engineering(SKLMF-KF-2102)。
文摘Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金Project(51574045)supported by the National Nature Science Foundation of China
文摘The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value for promoting gas hydrate formation and ensuring the flow safe of natural gas hydrate slurry.The experimental section was made of plexiglass pipe and the experimental medium was air and water.The flow pattern of the gas-liquid two-phase swirl flow in the horizontal pipe was divided,according to a high-definition camera and the overall characteristics of the gas-liquid interface.The flow pattern map of the gas-liquid two-phase swirl flow in a horizontal pipe was studied.The influence of the flow velocity and vane parameters on pressure drop was investigated.Two types of gas-liquid two-phase swirl flow pressure drop models was established.The homogeneous-phase and split-phase pressure drop models have good prediction on swirl bubble flow,swirl dispersed flow,swirl annular flow and swirl stratified flow,and the predictive error band is not more than 20%.
基金Supported by the National Natural Science Foundation of China (20876107) the Opening Project of State Key Laboratory of Chemical Engineering (SKL-ChE-08B06)
文摘The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL-ChE-18B03)the Municipal Science and Technology Commission of Tianjin (No. 2009ZCKFGX01900)
文摘A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.
基金supported by the Natural Science Foundation of Beijing(3142004)the National Basic Research Program of China(2011CB710704)
文摘In this paper, the numerical simulations have been carried out to evaluate the two-phase pressure drop and liquid distribution in screw channel. The numerical models are validated against the present experimental data with statistical accuracy. The effects of pitch circle diameter(PCD), inlet velocity and inlet sectional liquid holdup on the pressure drop and liquid distribution characteristics in the screw channel are illustrated. It is found that decreasing the PCD and increasing the inlet sectional liquid holdup can increase the liquid holdup on the outer side in screw channel. The PCD and the inlet sectional liquid holdup need to be considered in evaluating the two-phase frictional pressure drop per unit length in the screw channel. The PCD has an effect on the development of the average pressure in the various cross sections, and the inlet sectional liquid holdup has no visible impact on the changing process of the pressure drop in the screw channel. The correlation developed predicts the two-phase frictional pressure drop in the screw channel with great statistical accuracy.
基金National Natural Science Foundation of China(No.61572084)the National Key Research and Development Program of China(2016ZX05056004-002).
文摘The accurate prediction of the pressure distribution of highly viscous fluids in wellbores and pipelines is of great significance for heavy oil production and transportation.The flow behavior of high-viscosity fluids is quite different with respect to that of low-viscosity fluids.Currently,the performances of existing pressure-drop models seem to be relatively limited when they are applied to high-viscosity fluids.In this study,a gas-liquid two-phase flow experiment has been carried out using a 60 mm ID horizontal pipe with air and white oil.The experimental results indicate that viscosity exerts a significant influence on the liquid holdup and pressure drop.At the same gas and liquid volume,both the liquid holdup and pressure drop increase with an increase in the viscosity.Combining two existing models,a modified pressure drop method is developed,which is applicable to horizontal pipes for different viscosities and does not depend on the flow pattern.This new method displays a high accuracy in predicting the new experimental data presented here and other published data in literature.
基金Acknowledgement: The study is supported by the National Nature Science Foundation. Patent code is 200620098211.4.
文摘An experiment was carried out to investigate the relation of the maximum velocity of air passing through narrowest passage, mass flux of spray water in one square meter in one hour and the pressure drop of tube bundles. Twelve equations were obtained for the relation. The results show that the pressure drop of the tube bundles increases with increase of the maximum velocity of air and the mass flux of spray water. Comparing the pressure drop of the bare tube bundles with that of the film-enhanced tube bundles, it is found that the pressure drop of the film-enhanced tube bundles is lower about 11% and the surface roughness of the film-enhanced plates is a main factor that influences the pressure drop. The data and method obtained in the paper can be used to compute the pressure drop of the film-enhanced tube bundles and is helpful for selection of fan.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52071160 and 52071203)the 333-Key-Industry Talent Project of Jiangsu Scientific Committee(Grant No.JTO 2022-21).
文摘The water-drop-shaped pressure hull has a good streamline,which has good application prospect in the underwater observatory.Therefore,this study conducted analytical,experimental and numerical investigation of the buckling properties of water-drop-shaped pressure hulls under hydrostatic pressure.A water-drop experiment was conducted to design water-drop-shaped pressure hulls with various shape indices.The critical loads for the water-drop-shaped pressure hulls were resolved by using Mushtari’s formula.Several numerical simulations including linear buckling analysis and nonlinear buckling analysis including eigenmode imperfections were performed.The results indicated that the critical loads resolved by Mushtari's formula were in good agreement with the linear buckling loads from the numerical simulations.This formula can be extended to estimate the buckling capacity of water-drop-shaped pressure hulls.In addition,three groups of pressure hulls were fabricated by using stereolithography,a rapid prototyping technique.Subsequently,three groups of the pressure hulls were subjected to ultrasonic measurements,optical scanning,hydrostatic testing and numerical analysis.The experimental results were consistent with the numerical results.The results indicate that the sharp end of the water-drop-shaped pressure hulls exhibited instability compared with the blunt end.This paper provides a new solution to the limitations of experimental studies on the water-drop-shaped pressure hulls as well as a new configuration and evaluation method for underwater observatories.
基金part of a key project carried out in 2009–2010financially supported by the National Key Sci-Tech Major Special Item (Grant No. 2009ZX05038)
文摘A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were developed based on the well liquid flow equation. FBHPs during the production were predicted by considering the effect of entrained liquid on gravitational gradients. Comparison of calculated BHPs by Cullender-Smith and proposed method was also studied. The results show that the proposed algorithm gives the desired accuracy of calculating BHPs in the low- productivity and low-pressure CBM wells. FBHP is resulted from the combined action of wellhead pressure, gas column pressure and fluid column pressure. Variation of kinetic energy term, compressibility and friction factors with depth increments and liquid holdup with velocity should be considered to simulate the real BHPs adequately. BHP is a function of depth of each column segment. The small errors of less than 1.5% between the calculated and measured values are obtained with each segment within 25 m. Adjusting BHPs can effectively increase production pressure drop, which is beneficial to CBM desorption and enhances reservoir productivity. The increment of pressure drop from 5.37 MPa2 to 8.66 MPa2 leads to an increase of CBM production from 3270 m3/d to 6700 m3/d and is attributed to a decrease in BHP from 2.25 MPa to 1.33 MPa.
基金the National Science and Technology Major Project of China(No.2016ZX05028-004-003).
文摘Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid velocities.The flow rates in the two branches were measured accurately to determine how the two considered phases distribute in the two outlets.The experimental results have shown that when the two outlet pressures are asymmetric,the two-phase flow always tends to flow into the outlet which has a lower pressure.As the inlet liquid velocity increases,however,the two-phase flow gradually tends to split evenly.Compared with the experiment results,the pressure difference between the two outlets can be determined more accurately by means of numerical simulation.The trends of experimental results and simulations are in very good agreement.
文摘A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related numerical solutions are obtained using a finite difference method.The correctness of the method is demonstrated using a two-dimensional inhomogeneous low permeability example.Then,the differences in the cumulative oil and water production are investigated for different starting water saturations.It is shown that when the initial water saturation grows,the water content of the block continues to rise and the cumulative oil production gradually decreases.
基金University of Queensland International Scholarship(UQI)for its support(Grant No.42719692)。
文摘While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct numerical simulation(DNS).Only a few studies have sought to numerically solve Navier—Stokes equations with level-set(LS)or volume-of-fluid(VoF)methods,each of which has constraints in terms of meniscus dynamics for various flow velocities in the control volume(CV)domain.The Shan—Chen multiphase multicomponent lattice Boltzmann method(SC-LBM)has a fundamental mechanism to separate immiscible fluid phases in the density domain without these limitations.Therefore,this study applied it to explore two-phase displacement in a single representative elementary volume(REV)of two-dimensional(2D)porous media.As a continuation of a previous investigation into one-step inflow/outflow in 2D porous media,this work seeks to identify dynamic nonequilibrium effects on capillary pressure—saturation relationship(P_(c)—S)for quasi-steady-state flow and multistep inflow/outflow under various pressure boundary conditions.The simulation outcomes show that P_(c),S and specific interfacial area(a_(nw))had multistep-wise dynamic effects corresponding to the multistep-wise pressure boundary conditions.With finer adjustments to the increase in pressure over more steps,dynamic nonequilibrium effects were significantly alleviated and even finally disappeared to achieve quasisteady-state inflow/outflow conditions.Furthermore,triangular wave-formed pressure boundary conditions were applied in different periods to investigate dynamic nonequilibrium effects for hysteretical Pc—S.The results showed overshoot and undershoot of P_(c)to S in loops of the nonequilibrium hysteresis.In addition,the flow regimes of multistep-wise dynamic effects were analyzed in terms of Reynolds and capillary numbers(Re and Ca).The analysis of REV-scale flow regimes showed higher Re(1<Re<10)for more significant dynamic nonequilibrium effects.This indicates that inertia is critical for transient twophase flow in porous media under dynamic nonequilibrium conditions.
基金National Natural Science Foundation of China(No. 20136010)
文摘An experimental study of the extent of axial backmixing in both gas and liquid phases was conducted in a 150 mm ID column packed with Mellapak 250Y corrugated structured packing. The column was operated at pressures ranging from 0.3 MPa to 2.0MPa with nitrogen and water flowing countercurrently through the packing. The amount of axial backmixing was experimentally evaluated by the pulse response techniques using hydrogen in gas phase and an aqueous solution of NaCl in liquid phase as inert tracers. The response of the tracer was monitored by means of thermal conductivity in the gas phase and electrical conductance in the liquid phase. The experimentally determined residence time distribution (RTD) curves were interpreted in terms of the diffusion-type modei. The results indicated that the axial backmixing in the gas increased notably with gas flowrate and slightly with operating pressure and liquid flowrate. The liquid-phase axial backmixing was an increasing function of both gas and liquid flowrates and insensitive to pressure. Various correlations were developed for reproducing the experimental mixing data. The agreement between experimental and correlated data appeared to be acceptable and within ±20% of difference.
基金China Scholarship Council Postgraduate Scholarship Program(No.2007U20027)the National Natural Science Foundation of China(No.50876020)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B02)
文摘An open-source computational fluid dynamics(CFD)code named OpenFOAM is used to validate the flow field characteristics(flow patterns and pressure drop)around a single cylinder.Results show that OpenFOAM is suitable for simulating the low Reynolds number flow and Shaw's analytical expression is one of the solutions to Stokes' paradox.Experiments are performed on fibrous media and OpenFOAM simulation is carried out using the Tronville-Rivers two-dimensional random fiber model in terms of the characteristics of pressure drop.It is shown that the Kuwabara model predicts the pressure drop of fibrous filter media more accurately than the Happel model,and the experimental pressure drop is between simulated pressure drops with both non-slip and full-slip boundaries on fiber surfaces.
文摘This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR meta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the lit- erature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters.
基金This work was supported by the National Meg-science Engineering Project of the Chinese Government.
文摘Under the condition of steady state, the pressure drop of coolant is mainly caused by friction along the cable. In the CICC (cable-in-conduit-conductor), helium flow within the conductor consists of two parallel interconnected tubes. The velocity distribution has some differece between the central channel and conductor space. The region of Reynolds number is from 103 to 106. This paper describes the calculation of pressure drop of HT-7U CICC at various mass flows. It is assumed that the coolant flows in two parallel, rough tubes during the calculation.
基金Supported by the National Natural Science Foundation of China(51765016,51475165,11462004)the Jiangxi Provincial Foundation for Leaders of Academic and Disciplines in Science(20162BCB22019)5511 Science and Technology Innovation Talent Project of Jiangxi Province(20165BCB18011)
文摘A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single annular flow channel,a single radial flow channel and an orifice flow channel through structure design.The finite element modelling and simulation analysis of the MR valve was carried out using ANSYS/Emag software to investigate the changes of the magnetic flux density and yield stress along the fluid flow paths under the four different radial resistance gaps.Moreover,the experimental tests were also conducted to evaluate the pressure drop,showing that the proposed MR valve has significantly improved its pressure drop at 0.5 mm width of the radial resistance gap when the annular resistance gap is fixed at 1 mm.
基金Project 50425414 supported by the National Outstanding Youth Science Foundation of China
文摘A packing-flotation column was proposed to optimize the flotation environment A research system was es- tablished using a 100 mm diameter cyclonic micro-bubble flotation column to study fluid properties. Dry-plate and wet- plate pressure drops were studied and the corresponding pressure drop equations developed. The results show that the dry-plate pressure drop of the packing cyclonic micro-bubble flotation column is 10–15 times less than that of the chemical tower, which is principally shown in its relatively small resistance coefficient, ξ ≈0.0207. The wet-plate pressure drop is 2–3 times higher than that of the chemical tower, which is largely caused by the separation materials and characteristics of the equipment. With flotation, the greater the pressure drop, the better the flotation environment.