During geomagnetic disturbances, electric fields induced in the Earth and in power systems, pipelines and submarine cables can interfere with the operation of these systems. Calculations for submarine cables are compl...During geomagnetic disturbances, electric fields induced in the Earth and in power systems, pipelines and submarine cables can interfere with the operation of these systems. Calculations for submarine cables are complicated by the need to consider not just the induction directly into the cable but also the earth potentials produced at the coast at each end of the cable. To determine the coast potentials, we present a new model of the ocean and earth conductivity structure that spans the whole length of a cable from one coast to another. Calculations are based on the generalised thin sheet approach introduced by Ranganayaki and Madden but converted to a transmission line model that can be solved using standard circuit theory techniques. It is shown how the transmission line model can be used to calculate the earth potential profile from one side of an ocean or sea to the other. Example calculations are presented for a shallow sea, a shallow ocean, and a deep ocean that are simplified approximations to the North Sea, Tasman Sea and Pacific Ocean and show that the peak potentials occur at the coast. An examination is also made of how the width of a shallow sea and the width of the continental shelf affect these coast potentials. The modelling technique and example results provide a guide for more detailed modelling of geomagnetic induction along the routes of specific submarine cables.展开更多
The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques...The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques are encumbered with sophisticated transformations, which weaken the techniques. Power loss minimization is crucial to the efficient design and operation of power transmission lines. Minimization of losses is one way to meet steady grid supply, especially at peak demand. Thus, this paper has presented a gradient technique to obtain optimal variables and values from the power loss model, which efficiently minimizes power losses by modifying the traditional power loss model that combines Ohm and Corona losses. Optimality tests showed that the unmodified model does not support the minimization of power losses on transmission lines as the Hessian matrix portrayed the maximization of power losses. However, the modified model is consistent with the gradient method of optimization, which yielded optimum variables and values from the power loss model developed in this study. The unmodified (modified) models for Bujagali-Kawanda 220 kV and Masaka West-Mbarara North 132 kV transmission lines in Uganda showed maximum power losses of 0.406 (0.391) and 0.452 (0.446) kW/km/phase respectively. These results indicate that the modified model is superior to the unmodified model in minimizing power losses in the transmission lines and should be implemented for the efficient design and operation of power transmission lines within and outside Uganda for the same transmission voltages.展开更多
The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low- voltage physical experimental pl...The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low- voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines.展开更多
This paper shows the development of transmission line model, based on lumped element circuit that provides answers directly in the time and phase domain. This model is valid to represent the ideally transposed line, t...This paper shows the development of transmission line model, based on lumped element circuit that provides answers directly in the time and phase domain. This model is valid to represent the ideally transposed line, the phases of each of the small line segments are separated in their modes of propagation and the voltage and current are calculated at the modal domain. However, the conversion phase-mode-phase is inserted in the state equations which describe the currents and voltages along the line of which there is no need to know the user of the model representation of the theory in the line modal domain.展开更多
:A new accurate algorithms based on mathematical modeling of two parallel transmissions lines system(TPTLS)as influenced by the mutual effect to determine the fault location is discussed in this work.The distance rela...:A new accurate algorithms based on mathematical modeling of two parallel transmissions lines system(TPTLS)as influenced by the mutual effect to determine the fault location is discussed in this work.The distance relay measures the impedance to the fault location which is the positive-sequence.The principle of summation the positive-,negative-,and zero-sequence voltages which equal zero is used to determine the fault location on the TPTLS.Also,the impedance of the transmission line to the fault location is determined.These algorithms are applied to single-line-to-ground(SLG)and double-line-to-ground(DLG)faults.To detect the fault location along the transmission line,its impedance as seen by the distance relay is determined to indicate if the fault is within the relay’s reach area.TPTLS under study are fed from one-and both-ends.A schematic diagrams are obtained for the impedance relays to determine the fault location with high accuracy.展开更多
In this study, the transmission capacity of VANETs in a highway scenario is analysed on the basis of a 1D line model and the carrier sense multiple access with collision avoidance(CSMA/CA) protocol. We describe the CS...In this study, the transmission capacity of VANETs in a highway scenario is analysed on the basis of a 1D line model and the carrier sense multiple access with collision avoidance(CSMA/CA) protocol. We describe the CSMA/CA protocol used in IEEE802.11 p from the perspective of the geometric relationship amongst simultaneous transmitters. The desired channel and interfering channels are assumed to experience the same amount of path-loss and Rayleigh fading. On the basis of the proposed model, we analyse the attempted transmission probability of each road segment and the maximum intensity of active transmitters, including their theoretical values. Then, we employ the physical model to obtain the outage probability and derive the upper bound of the transmission capacity of a VANET, which is defined as the average spatial density of successful transmissions in the network. Simulation results indicate that the theoretical value offers a good bound on network capacity.展开更多
A method used for determining the number of equivalent π sections oftransmission line model according to the frequency range of interest and the model accura-cy defined herein is proposed.Factors influencing the disc...A method used for determining the number of equivalent π sections oftransmission line model according to the frequency range of interest and the model accura-cy defined herein is proposed.Factors influencing the discrepancies between continuous ordistributed parameter and multiple π or lumped parameter models are discussed.Generalconclusions concerning the π section lengths of line models used in transient stability,faulttransient and switching over-voltage studies are drawn.Time-domain simulation resultsconfirm the effectiveness of this method.展开更多
Model of an atom by analogy with the transmission line is derived using Maxwell’s equations and Lorentz’ theory of electrons. To be realistic such a model requires that the product of the structural coefficient of L...Model of an atom by analogy with the transmission line is derived using Maxwell’s equations and Lorentz’ theory of electrons. To be realistic such a model requires that the product of the structural coefficient of Lecher’s transmission lines σ and atomic number Z is constant. It was calculated that this electromechanical constant is 8.27756, and we call it structural constant. This constant builds the fine-structure constant 1/α = 137.036, and with permeability μ, permittivity ε and elementary charge e builds Plank’s constant h. This suggests the electromagnetic character of Planck’s constant. The relations of energy, frequency, wavelength and momentum of electromagnetic wave in an atom are also derived. Finally, an equation, similar to Schrodinger’s equation, was derived, with a clear meaning of the wave function, which represents the electric or magnetic field strength of the observed electromagnetic wave.展开更多
For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplit...For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplitude and repetition rate of induced corona current,by using the probability theory and mathematical statistics,we establish a stochastic model for the wide-sense stationary random process of corona discharges.Then combining the stochastic model with model-propagation-analysis method,the RI levels under three-phase UHV AC transmission lines are calculated.The results of the calculation based on stochastic model method and International Council on Large Electric Systems(CIGRE) excitation function are compared with that based on semi-empirical method and some other excitation functions.The stochastic model based on different excitation functions is also adopted to simulate the RI levels under finite test lines with two opened terminations.The results indicate that with the same average maximum gradient on conductor surface and the same conductor type,the number of corona discharge per unit length is one of the main reasons that causes the difference between different excitation functions.It is also concluded that for a long test line,the effect of standing wave on RI field strength is negligible in the middle of the line,but obvious near both terminations: for a 10-km line,the maximum difference in RI field strength is 2.78 dB,between the peak value of the standing wave near the ends and the steady value near the middle of the line.展开更多
Arising from the proposed Transmission Line(TL) model for ERR and wire structure, a TL model for a metamaterial absorber is proposed. The S-parameters obtained by this TL model demonstrate the same shapes as the simul...Arising from the proposed Transmission Line(TL) model for ERR and wire structure, a TL model for a metamaterial absorber is proposed. The S-parameters obtained by this TL model demonstrate the same shapes as the simulation. An investigation of the TL model and average absorption power densities shows that the metamaterial absorber does not simply convert the electromagnetic wave into thermal energy, but concentrate the electromagnetic wave into a small space where it is finally absorbed. This suggests that the metamaterial absorber can be applied to solar cells for the purpose of light trapping.展开更多
We present a time domain hybrid method to realize the fast coupling analysis of transmission lines excited by space electromagnetic fields, in which parallel finite-difference time-domain (FDTD) method, interpolation ...We present a time domain hybrid method to realize the fast coupling analysis of transmission lines excited by space electromagnetic fields, in which parallel finite-difference time-domain (FDTD) method, interpolation scheme, and Agrawal model-based transmission line (TL) equations are organically integrated together. Specifically, the Agrawal model is employed to establish the TL equations to describe the coupling effects of space electromagnetic fields on transmission lines. Then, the excitation fields functioning as distribution sources in TL equations are calculated by the parallel FDTD method through using the message passing interface (MPI) library scheme and interpolation scheme. Finally, the TL equations are discretized by the central difference scheme of FDTD and assigned to multiple processors to obtain the transient responses on the terminal loads of these lines. The significant feature of the presented method is embodied in its parallel and synchronous calculations of the space electromagnetic fields and transient responses on the lines. Numerical simulations of ambient wave acting on multi-conductor transmission lines (MTLs), which are located on the PEC ground and in the shielded cavity respectively, are implemented to verify the accuracy and efficiency of the presented method.展开更多
With the continuous growth of signal frequency and package density, discontinuity of the high-frequency interconnection in 3 D micro/nano integration becomes unavoidable, which results in serious signal integrity prob...With the continuous growth of signal frequency and package density, discontinuity of the high-frequency interconnection in 3 D micro/nano integration becomes unavoidable, which results in serious signal integrity problems. Traditional interconnection design schemes, such as termination and shielding/isolation, cannot meet the requirements under the unified constraints of specific cost, space occupancy, and performance. In this study, a transmission line design optimization scheme based on the segmental transmission line(STL) methodology is proposed. The genetic algorithm is used to select the optimal segment structure parameters of the transmission line to construct an STL with satisfying transmission performance or meet the specific signal amplitude adjustment requirements. This scheme can be adapted to various signal transmission scenarios to significantly improve the signal loss caused by reflection or other negative electromagnetic factors and meet the requirements for the modeling of discontinuous transmission lines. The simulation results show that this scheme is effective in the design scenario of performance improvement or equivalent modeling of discontinuous transmission lines and has significant advantages in circuit area reduction.展开更多
In this article, a transmission line is represented by a cascade of n circuits using a single phase. It is analyzed what is the reasonable number of n circuits and the number of blocks composed by parallel resistor an...In this article, a transmission line is represented by a cascade of n circuits using a single phase. It is analyzed what is the reasonable number of n circuits and the number of blocks composed by parallel resistor and inductor in parallel for reduction of numerical oscillations. It is simulated the numerical routine with and without the effectof frequency in the longitudinal parameters. Initially, it is used to state variables and 7t circuits representing the transmission line composing a linear system which is solved by numerical routines based on the trapezoidal rule. The effect of frequency on the line is synthesized by resistors and inductors in parallel and this representation is analyzed in details. It is described as transmission lines and the frequency influence in these lines through the state variables.展开更多
The paper presents some problems of lightning overvoltage modeling in transmission lines with nonlinear elements.The presented results were obtained mostly for fast front transients of subsequent lightning return stro...The paper presents some problems of lightning overvoltage modeling in transmission lines with nonlinear elements.The presented results were obtained mostly for fast front transients of subsequent lightning return stroke currents.The effectiveness of numerical algorithms of nonlinear models and possibilities of their development for such transients are analyzed.Computer simulations carried out by application of EMTP show that nonlinear models of back-flashover and ZnO arresters work properly,while the implemented corona model can not be used for relatively large peak values of subsequent lightning return-stroke currents.展开更多
The distributed capacitance of the line becomes larger as the scale of wind farms,the transmission voltage level,and the transmission distance increase.Hence,the error of the traditional time-domain distance protectio...The distributed capacitance of the line becomes larger as the scale of wind farms,the transmission voltage level,and the transmission distance increase.Hence,the error of the traditional time-domain distance protection scheme based on the R-L model,which ignores the distributed capacitance of the line,becomes unacceptable.Therefore,the error of the time-domain fault location method based on the R-L model,especially the maximum error range,is theoretically analyzed in this paper.On this basis,a novel fault location method based on the RL and Bergeron models is proposed.Then,a fast time-domain distance protection scheme is designed.In the proposed scheme,the error in the fitting calculation is used to construct a weight matrix,and an algorithm for solving the time-domain differential equations is designed to improve the calculation speed and stability.Compared with the traditional frequency-domain distance protection scheme,the proposed scheme is independent of the power supply characteristics;thus,it is suitable for wind farm transmission lines.In addition,compared with the traditional method based on the R-L model,the proposed scheme effectively avoids the negative influence of the distributed capacitance of the line,which significantly improves the operating speed.Different types of faults are simulated by PSCAD/EMTDC to verify the effectiveness and superiority of the proposed scheme.展开更多
When an electromagnetic signal transmits through a coaxial cable, it propagates at speed determined by the dielectrics of insulator between the cooper core wire and the metallic shield. However, we demonstrate here th...When an electromagnetic signal transmits through a coaxial cable, it propagates at speed determined by the dielectrics of insulator between the cooper core wire and the metallic shield. However, we demonstrate here that, once the shielding layer of the coaxial cable is cut into two parts leaving a small gap, while the copper core wire is still perfectly connected, a remarkable transmission delay immediately appears in the system. We have revealed by both computational simulation and experiments that, when the gap spacing between two parts of the shielding layer is small, this delay is mostly determined by the overall geometrical parameters of the conductive boundary which connects two parts of the cut shielding layer. A reduced analytic formula for the transmission delay related with geometrical parameters, which is based on an inductive model of the transmission system, matches well with the fitted formula of the simulated delay. This above structure is analog to the situation that an interconnect is between two inter-modules in a circuit. The results suggest that for high speed circuits and systems, parasitic inductance should be taken into full consideration, and compact conductive packaging is favorable for reducing transmission delay of inter-modules, therefore enhancing the performance of the system.展开更多
The impact of strong wind and rain loads will adversely affect the reliability of the overhead lines, it’s necessary to study changes in risk of transmission system and establish the reliability model of overhead lin...The impact of strong wind and rain loads will adversely affect the reliability of the overhead lines, it’s necessary to study changes in risk of transmission system and establish the reliability model of overhead lines through the strong wind and rain loads. In this article, the stochastic properties of overhead lines’ strength and loads were used, according to principles of structural reliability, time-dependent failure probability model of overhead lines was established under the impact of strong wind and rain loads. Simulation of the IEEE-79 system demonstrates that failure probability model is effective. This simulation result also shows that the impact of strong wind and rain loads will seriously affect reliability indices of system loads, rain loads cannot be ignored under strong wind and rain loads.展开更多
文摘During geomagnetic disturbances, electric fields induced in the Earth and in power systems, pipelines and submarine cables can interfere with the operation of these systems. Calculations for submarine cables are complicated by the need to consider not just the induction directly into the cable but also the earth potentials produced at the coast at each end of the cable. To determine the coast potentials, we present a new model of the ocean and earth conductivity structure that spans the whole length of a cable from one coast to another. Calculations are based on the generalised thin sheet approach introduced by Ranganayaki and Madden but converted to a transmission line model that can be solved using standard circuit theory techniques. It is shown how the transmission line model can be used to calculate the earth potential profile from one side of an ocean or sea to the other. Example calculations are presented for a shallow sea, a shallow ocean, and a deep ocean that are simplified approximations to the North Sea, Tasman Sea and Pacific Ocean and show that the peak potentials occur at the coast. An examination is also made of how the width of a shallow sea and the width of the continental shelf affect these coast potentials. The modelling technique and example results provide a guide for more detailed modelling of geomagnetic induction along the routes of specific submarine cables.
文摘The classical minimization of power losses in transmission lines is dominated by artificial intelligence techniques, which do not guarantee global optimum amidst local minima. Revolutionary and evolutionary techniques are encumbered with sophisticated transformations, which weaken the techniques. Power loss minimization is crucial to the efficient design and operation of power transmission lines. Minimization of losses is one way to meet steady grid supply, especially at peak demand. Thus, this paper has presented a gradient technique to obtain optimal variables and values from the power loss model, which efficiently minimizes power losses by modifying the traditional power loss model that combines Ohm and Corona losses. Optimality tests showed that the unmodified model does not support the minimization of power losses on transmission lines as the Hessian matrix portrayed the maximization of power losses. However, the modified model is consistent with the gradient method of optimization, which yielded optimum variables and values from the power loss model developed in this study. The unmodified (modified) models for Bujagali-Kawanda 220 kV and Masaka West-Mbarara North 132 kV transmission lines in Uganda showed maximum power losses of 0.406 (0.391) and 0.452 (0.446) kW/km/phase respectively. These results indicate that the modified model is superior to the unmodified model in minimizing power losses in the transmission lines and should be implemented for the efficient design and operation of power transmission lines within and outside Uganda for the same transmission voltages.
基金supported by National Natural Science Foundation of China(Nos.51277061 and 51420105011)
文摘The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low- voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines.
文摘This paper shows the development of transmission line model, based on lumped element circuit that provides answers directly in the time and phase domain. This model is valid to represent the ideally transposed line, the phases of each of the small line segments are separated in their modes of propagation and the voltage and current are calculated at the modal domain. However, the conversion phase-mode-phase is inserted in the state equations which describe the currents and voltages along the line of which there is no need to know the user of the model representation of the theory in the line modal domain.
文摘:A new accurate algorithms based on mathematical modeling of two parallel transmissions lines system(TPTLS)as influenced by the mutual effect to determine the fault location is discussed in this work.The distance relay measures the impedance to the fault location which is the positive-sequence.The principle of summation the positive-,negative-,and zero-sequence voltages which equal zero is used to determine the fault location on the TPTLS.Also,the impedance of the transmission line to the fault location is determined.These algorithms are applied to single-line-to-ground(SLG)and double-line-to-ground(DLG)faults.To detect the fault location along the transmission line,its impedance as seen by the distance relay is determined to indicate if the fault is within the relay’s reach area.TPTLS under study are fed from one-and both-ends.A schematic diagrams are obtained for the impedance relays to determine the fault location with high accuracy.
基金supported in part by the National Natural Science Foundation of China under Grant No.61271184 and 61571065
文摘In this study, the transmission capacity of VANETs in a highway scenario is analysed on the basis of a 1D line model and the carrier sense multiple access with collision avoidance(CSMA/CA) protocol. We describe the CSMA/CA protocol used in IEEE802.11 p from the perspective of the geometric relationship amongst simultaneous transmitters. The desired channel and interfering channels are assumed to experience the same amount of path-loss and Rayleigh fading. On the basis of the proposed model, we analyse the attempted transmission probability of each road segment and the maximum intensity of active transmitters, including their theoretical values. Then, we employ the physical model to obtain the outage probability and derive the upper bound of the transmission capacity of a VANET, which is defined as the average spatial density of successful transmissions in the network. Simulation results indicate that the theoretical value offers a good bound on network capacity.
文摘A method used for determining the number of equivalent π sections oftransmission line model according to the frequency range of interest and the model accura-cy defined herein is proposed.Factors influencing the discrepancies between continuous ordistributed parameter and multiple π or lumped parameter models are discussed.Generalconclusions concerning the π section lengths of line models used in transient stability,faulttransient and switching over-voltage studies are drawn.Time-domain simulation resultsconfirm the effectiveness of this method.
文摘Model of an atom by analogy with the transmission line is derived using Maxwell’s equations and Lorentz’ theory of electrons. To be realistic such a model requires that the product of the structural coefficient of Lecher’s transmission lines σ and atomic number Z is constant. It was calculated that this electromechanical constant is 8.27756, and we call it structural constant. This constant builds the fine-structure constant 1/α = 137.036, and with permeability μ, permittivity ε and elementary charge e builds Plank’s constant h. This suggests the electromagnetic character of Planck’s constant. The relations of energy, frequency, wavelength and momentum of electromagnetic wave in an atom are also derived. Finally, an equation, similar to Schrodinger’s equation, was derived, with a clear meaning of the wave function, which represents the electric or magnetic field strength of the observed electromagnetic wave.
基金supported by Science and Technology Project of SGCC(SG1021)
文摘For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplitude and repetition rate of induced corona current,by using the probability theory and mathematical statistics,we establish a stochastic model for the wide-sense stationary random process of corona discharges.Then combining the stochastic model with model-propagation-analysis method,the RI levels under three-phase UHV AC transmission lines are calculated.The results of the calculation based on stochastic model method and International Council on Large Electric Systems(CIGRE) excitation function are compared with that based on semi-empirical method and some other excitation functions.The stochastic model based on different excitation functions is also adopted to simulate the RI levels under finite test lines with two opened terminations.The results indicate that with the same average maximum gradient on conductor surface and the same conductor type,the number of corona discharge per unit length is one of the main reasons that causes the difference between different excitation functions.It is also concluded that for a long test line,the effect of standing wave on RI field strength is negligible in the middle of the line,but obvious near both terminations: for a 10-km line,the maximum difference in RI field strength is 2.78 dB,between the peak value of the standing wave near the ends and the steady value near the middle of the line.
基金supported by Major State Basic Research Development Program of China (973 Program ) (No. 2007CB310407) the National Natural Science Foundation of China (No. 60721001 and No. 60801023 ).
文摘Arising from the proposed Transmission Line(TL) model for ERR and wire structure, a TL model for a metamaterial absorber is proposed. The S-parameters obtained by this TL model demonstrate the same shapes as the simulation. An investigation of the TL model and average absorption power densities shows that the metamaterial absorber does not simply convert the electromagnetic wave into thermal energy, but concentrate the electromagnetic wave into a small space where it is finally absorbed. This suggests that the metamaterial absorber can be applied to solar cells for the purpose of light trapping.
基金Project supported by China Postdoctoral Science Foundation ( 10000072311030 ), Scienee technology Research Foundation of Shandong University of China {10000080398125).
基金Project supported by the National Natural Science Foundation of China(Grant No.61701057)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2017jcyjAX0345).
文摘We present a time domain hybrid method to realize the fast coupling analysis of transmission lines excited by space electromagnetic fields, in which parallel finite-difference time-domain (FDTD) method, interpolation scheme, and Agrawal model-based transmission line (TL) equations are organically integrated together. Specifically, the Agrawal model is employed to establish the TL equations to describe the coupling effects of space electromagnetic fields on transmission lines. Then, the excitation fields functioning as distribution sources in TL equations are calculated by the parallel FDTD method through using the message passing interface (MPI) library scheme and interpolation scheme. Finally, the TL equations are discretized by the central difference scheme of FDTD and assigned to multiple processors to obtain the transient responses on the terminal loads of these lines. The significant feature of the presented method is embodied in its parallel and synchronous calculations of the space electromagnetic fields and transient responses on the lines. Numerical simulations of ambient wave acting on multi-conductor transmission lines (MTLs), which are located on the PEC ground and in the shielded cavity respectively, are implemented to verify the accuracy and efficiency of the presented method.
基金supported by the National Natural Science Foundation of China [Grant No. 61674016]Beijing Municipality Excellent Talents Training Assistance (Young Backbone Individuals) Project [No. 2017000020124G071]in part by the State Key Development Program for Basic Research of China (973 Program) [Grant 2015CB057201]。
文摘With the continuous growth of signal frequency and package density, discontinuity of the high-frequency interconnection in 3 D micro/nano integration becomes unavoidable, which results in serious signal integrity problems. Traditional interconnection design schemes, such as termination and shielding/isolation, cannot meet the requirements under the unified constraints of specific cost, space occupancy, and performance. In this study, a transmission line design optimization scheme based on the segmental transmission line(STL) methodology is proposed. The genetic algorithm is used to select the optimal segment structure parameters of the transmission line to construct an STL with satisfying transmission performance or meet the specific signal amplitude adjustment requirements. This scheme can be adapted to various signal transmission scenarios to significantly improve the signal loss caused by reflection or other negative electromagnetic factors and meet the requirements for the modeling of discontinuous transmission lines. The simulation results show that this scheme is effective in the design scenario of performance improvement or equivalent modeling of discontinuous transmission lines and has significant advantages in circuit area reduction.
文摘In this article, a transmission line is represented by a cascade of n circuits using a single phase. It is analyzed what is the reasonable number of n circuits and the number of blocks composed by parallel resistor and inductor in parallel for reduction of numerical oscillations. It is simulated the numerical routine with and without the effectof frequency in the longitudinal parameters. Initially, it is used to state variables and 7t circuits representing the transmission line composing a linear system which is solved by numerical routines based on the trapezoidal rule. The effect of frequency on the line is synthesized by resistors and inductors in parallel and this representation is analyzed in details. It is described as transmission lines and the frequency influence in these lines through the state variables.
文摘The paper presents some problems of lightning overvoltage modeling in transmission lines with nonlinear elements.The presented results were obtained mostly for fast front transients of subsequent lightning return stroke currents.The effectiveness of numerical algorithms of nonlinear models and possibilities of their development for such transients are analyzed.Computer simulations carried out by application of EMTP show that nonlinear models of back-flashover and ZnO arresters work properly,while the implemented corona model can not be used for relatively large peak values of subsequent lightning return-stroke currents.
基金supported by the Science and Technology Program of State Grid Corporation of China“Research on the Principle of Fast Protection in Time-frequency Domain with Single-ended Quantities of High-proportion New Energy Grid Lines”(No.5100-202040327A-0-0-00).
文摘The distributed capacitance of the line becomes larger as the scale of wind farms,the transmission voltage level,and the transmission distance increase.Hence,the error of the traditional time-domain distance protection scheme based on the R-L model,which ignores the distributed capacitance of the line,becomes unacceptable.Therefore,the error of the time-domain fault location method based on the R-L model,especially the maximum error range,is theoretically analyzed in this paper.On this basis,a novel fault location method based on the RL and Bergeron models is proposed.Then,a fast time-domain distance protection scheme is designed.In the proposed scheme,the error in the fitting calculation is used to construct a weight matrix,and an algorithm for solving the time-domain differential equations is designed to improve the calculation speed and stability.Compared with the traditional frequency-domain distance protection scheme,the proposed scheme is independent of the power supply characteristics;thus,it is suitable for wind farm transmission lines.In addition,compared with the traditional method based on the R-L model,the proposed scheme effectively avoids the negative influence of the distributed capacitance of the line,which significantly improves the operating speed.Different types of faults are simulated by PSCAD/EMTDC to verify the effectiveness and superiority of the proposed scheme.
文摘When an electromagnetic signal transmits through a coaxial cable, it propagates at speed determined by the dielectrics of insulator between the cooper core wire and the metallic shield. However, we demonstrate here that, once the shielding layer of the coaxial cable is cut into two parts leaving a small gap, while the copper core wire is still perfectly connected, a remarkable transmission delay immediately appears in the system. We have revealed by both computational simulation and experiments that, when the gap spacing between two parts of the shielding layer is small, this delay is mostly determined by the overall geometrical parameters of the conductive boundary which connects two parts of the cut shielding layer. A reduced analytic formula for the transmission delay related with geometrical parameters, which is based on an inductive model of the transmission system, matches well with the fitted formula of the simulated delay. This above structure is analog to the situation that an interconnect is between two inter-modules in a circuit. The results suggest that for high speed circuits and systems, parasitic inductance should be taken into full consideration, and compact conductive packaging is favorable for reducing transmission delay of inter-modules, therefore enhancing the performance of the system.
文摘The impact of strong wind and rain loads will adversely affect the reliability of the overhead lines, it’s necessary to study changes in risk of transmission system and establish the reliability model of overhead lines through the strong wind and rain loads. In this article, the stochastic properties of overhead lines’ strength and loads were used, according to principles of structural reliability, time-dependent failure probability model of overhead lines was established under the impact of strong wind and rain loads. Simulation of the IEEE-79 system demonstrates that failure probability model is effective. This simulation result also shows that the impact of strong wind and rain loads will seriously affect reliability indices of system loads, rain loads cannot be ignored under strong wind and rain loads.