针对传统多变元可视化方法--星形坐标法(star coordinates,简称SC)降维过程信息损失较为严重、可视化结果无法体现维度分布信息及手动配置维度轴十分繁杂的不足,提出一种改进的星形坐标法(advanced star coordinates,简称ASC),使用沿直...针对传统多变元可视化方法--星形坐标法(star coordinates,简称SC)降维过程信息损失较为严重、可视化结果无法体现维度分布信息及手动配置维度轴十分繁杂的不足,提出一种改进的星形坐标法(advanced star coordinates,简称ASC),使用沿直径方向的向量作为维度轴,设计维度轴配置策略优化各维度轴之间的夹角及排列顺序,以减小多维信息对象在改进星形坐标系中与在多维坐标系中坐标差别为准则,使用最优化方法实现对用户有意义的降维运算,将多维信息映射到低维可视空间中.实验结果表明,ASC的可视化结果不仅易于理解,而且能够有效提供维度分布信息,有利于用户发掘隐性知识,基于相关度的维配置策略可以大大减轻用户操作负担。展开更多
针对一些缺少参考对齐的本体匹配任务,提出一种基于深度无监督学习的匹配技术,通过对文本的上下文信息进行学习,提取到抽象文本特征,以此找到对齐。由于高维度输入会影响计算的效率,针对本体的多种描述构建CNN(convolutional neural net...针对一些缺少参考对齐的本体匹配任务,提出一种基于深度无监督学习的匹配技术,通过对文本的上下文信息进行学习,提取到抽象文本特征,以此找到对齐。由于高维度输入会影响计算的效率,针对本体的多种描述构建CNN(convolutional neural network)模块并且和不同的RNN(recurrent neural network)串行连接实现特征降维,提出一种改进的基于BiLSTM(bidirectional long and short term memory neural network)的注意力机制来提取较好的抽象特征。提出一种多主导的对齐集成策略将本体不同层次的对齐进行合并,提高匹配的质量。实验在OAEI(ontology alignment evaluation initiative)的benchmark测试集上进行,提出方法的评价指标较高,并且和其它匹配系统作比较,高质量的对齐验证了所提方法具有一定的先进性和创新性。展开更多
文摘针对传统多变元可视化方法--星形坐标法(star coordinates,简称SC)降维过程信息损失较为严重、可视化结果无法体现维度分布信息及手动配置维度轴十分繁杂的不足,提出一种改进的星形坐标法(advanced star coordinates,简称ASC),使用沿直径方向的向量作为维度轴,设计维度轴配置策略优化各维度轴之间的夹角及排列顺序,以减小多维信息对象在改进星形坐标系中与在多维坐标系中坐标差别为准则,使用最优化方法实现对用户有意义的降维运算,将多维信息映射到低维可视空间中.实验结果表明,ASC的可视化结果不仅易于理解,而且能够有效提供维度分布信息,有利于用户发掘隐性知识,基于相关度的维配置策略可以大大减轻用户操作负担。
文摘针对一些缺少参考对齐的本体匹配任务,提出一种基于深度无监督学习的匹配技术,通过对文本的上下文信息进行学习,提取到抽象文本特征,以此找到对齐。由于高维度输入会影响计算的效率,针对本体的多种描述构建CNN(convolutional neural network)模块并且和不同的RNN(recurrent neural network)串行连接实现特征降维,提出一种改进的基于BiLSTM(bidirectional long and short term memory neural network)的注意力机制来提取较好的抽象特征。提出一种多主导的对齐集成策略将本体不同层次的对齐进行合并,提高匹配的质量。实验在OAEI(ontology alignment evaluation initiative)的benchmark测试集上进行,提出方法的评价指标较高,并且和其它匹配系统作比较,高质量的对齐验证了所提方法具有一定的先进性和创新性。