We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Herm...We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.展开更多
Based on the technique of integration within an ordered product of operators, we derive new bosonicoperators' ordering identities by using entangled state representation and the properties of two-variable Hermite ...Based on the technique of integration within an ordered product of operators, we derive new bosonicoperators' ordering identities by using entangled state representation and the properties of two-variable Hermite poly-nomials H and vice versa. In doing so, some concise normally (antinormally) ordering operator identities, such asa+man =:Hm,n(a+,a):, ana+m = (-i)m+n:Hm,n(ia+,ia): are obtained.展开更多
A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconse...A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconservative: the result indicates that the model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling. We compare our mode/with the mode/ introduced by Stefano Lise and Maya Paczuski [Phys. Rev. Lett. 88 (2002) 228301], it is proved that they are not in the same universality class.展开更多
We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt d...We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt decomposition of hm,n is derived. It also turns out that hm,n can be generated by windowed Fourier transform of the single-variable Hermite functions. As an application, the wave function of the two-variable Hermite polynomial state S(γ)Hm,n (μa1^+, μa2^+│00〉, which is the minimum uncertainty state for sum squeezing, in ( η│representation is calculated.展开更多
By virtue of the entangled state representation we concisely derive some new operator identities with regard to the two-variable Hermite polynomial (TVHP). By them and the technique of integration within an ordered ...By virtue of the entangled state representation we concisely derive some new operator identities with regard to the two-variable Hermite polynomial (TVHP). By them and the technique of integration within an ordered product (IWOP) of operators we further derive new generating function formulas of the TVHP. They are useful in quantum optical theoretical calculations. It is seen from this work that by combining the IWOP technique and quantum mechanical representations one can derive some new integration formulas even without really performing the integration.展开更多
Forest volume, the major component of forest biomass, is an important issue in forest resource monitoring.It is estimated from tree volume tables or equations. Based on tree volume data of 1840 sample trees from Chine...Forest volume, the major component of forest biomass, is an important issue in forest resource monitoring.It is estimated from tree volume tables or equations. Based on tree volume data of 1840 sample trees from Chinese fir (Cunninghamia lanceolata) plantations in Guizhou Province in southwestern China, parallel one- and two-variable tree volume tables and tree height curves for central and other areas were constructed using an error-in-variable modeling method. The results show that, although the one-variable tree volume equations and height curves between the central and other areas were significantly different, the two-variable volume equations were sufficiently close, so that a generalized two-variable tree volume equation could be established for the entire province.展开更多
Based on the technique of integration within an ordered product of operators, we derive new bosonic operators, ordering identities by using entangled state representation and the properties of two-variable Hermite pol...Based on the technique of integration within an ordered product of operators, we derive new bosonic operators, ordering identities by using entangled state representation and the properties of two-variable Hermite polynomials , and vice versa. In doing so, some concise normally (antinormally) ordering operator identities, such as : are obtained.展开更多
By virtue of the technique of integration within Weyl ordered of operators we derive the formula of Weyl ordering expansion of power product of coordinate and momentum operators (√2Q)^m(√2iP) ^τ=:: Hm,r (√2...By virtue of the technique of integration within Weyl ordered of operators we derive the formula of Weyl ordering expansion of power product of coordinate and momentum operators (√2Q)^m(√2iP) ^τ=:: Hm,r (√2Q, √2iP)::, the introduction of two-variable Hermite polynomial Hm,r brings much convenience to the study of Weyl correspondence.展开更多
In reference to the Weyl ordering xmpn→ (1/2)m ∑l=0m (ml)Xm-lPnXl , where X and P are coordinate and momentum operator, respectively, this paper examines operators' s-parameterized ordering and its classical co...In reference to the Weyl ordering xmpn→ (1/2)m ∑l=0m (ml)Xm-lPnXl , where X and P are coordinate and momentum operator, respectively, this paper examines operators' s-parameterized ordering and its classical correspondence, finds the fundamental function-operator correspondence (1-s/2)(n+m)/2Hm,n(/2/1-sα,/2/1-sα)→αman and its complementary relation anam→(-i)n+m(1-s/2)(m+n)/2:Hm,n(i√2/1-sa,i√2/1-sa),where Hrn,n is the two-variable Hermite polynomial, a, at are bosonic annihilation and creation operators respectively, s is a complex parameter. The s'-ordered operator power-series expansion of s-ordered operator atraan in terms of the two-variable Hermite polynomial is also derived. Application of operators' s-ordering formula in studying displaced- squeezed chaotic field is discussed.展开更多
To begin with, in this paper, the governing equations of the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with variable thickness are derived. By using 'the met...To begin with, in this paper, the governing equations of the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with variable thickness are derived. By using 'the method of two-variable' and introducing four small parameters, the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with linear variable thickness are studied, and the uniformly valid asymptotic solution of Nth-order for epsilon(1) and Mth-order for epsilon(2) are obtained.展开更多
By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate wi...By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of Nth-order for ε_1 and Mth-order for ε_2 of the deflection functions and stress function are obtained.展开更多
Tw o variable Jacobi polynomials,as a two-dimensional basis,are applied to solve a class of temporal fractional partial differential equations.The fractional derivative operators are in the Caputo sense.The operationa...Tw o variable Jacobi polynomials,as a two-dimensional basis,are applied to solve a class of temporal fractional partial differential equations.The fractional derivative operators are in the Caputo sense.The operational matrices of the integration of integer and fractional orders are presented.Using these matrices together with the Tau Jacobi method converts the main problem into the corresponding system of algebraic equations.An error bound is obtained in a two-dimensional Jacobi-weighted Sobolev space.Finally,the efficiency of the proposed method is demonstrated by implementing the algorithm to several illustrative examples.Results will be compared witli those obtained from some existing methods.展开更多
This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion m...This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering.展开更多
基金Project supported by the National Natural Science Foundation of China(Grnat No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.
基金The project supported by National Natural Science Foundation of China under Grant No. 10175057 and the Foundation of Educational Ministry of China
文摘Based on the technique of integration within an ordered product of operators, we derive new bosonicoperators' ordering identities by using entangled state representation and the properties of two-variable Hermite poly-nomials H and vice versa. In doing so, some concise normally (antinormally) ordering operator identities, such asa+man =:Hm,n(a+,a):, ana+m = (-i)m+n:Hm,n(ia+,ia): are obtained.
文摘A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconservative: the result indicates that the model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling. We compare our mode/with the mode/ introduced by Stefano Lise and Maya Paczuski [Phys. Rev. Lett. 88 (2002) 228301], it is proved that they are not in the same universality class.
文摘We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt decomposition of hm,n is derived. It also turns out that hm,n can be generated by windowed Fourier transform of the single-variable Hermite functions. As an application, the wave function of the two-variable Hermite polynomial state S(γ)Hm,n (μa1^+, μa2^+│00〉, which is the minimum uncertainty state for sum squeezing, in ( η│representation is calculated.
基金supported by the National Natural Science Foundation of China (Grant No. 11174114)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 12KJD140001)the Research Foundation of Changzhou Institute of Technology of China (Grant No. YN1106)
文摘By virtue of the entangled state representation we concisely derive some new operator identities with regard to the two-variable Hermite polynomial (TVHP). By them and the technique of integration within an ordered product (IWOP) of operators we further derive new generating function formulas of the TVHP. They are useful in quantum optical theoretical calculations. It is seen from this work that by combining the IWOP technique and quantum mechanical representations one can derive some new integration formulas even without really performing the integration.
基金supported by the Agricultural Science and Technique Foundation of Guizhou Province, China (No. 2008-3059)the Research Funds of Forestry Administration of Guizhou Province, China (Nos. 2010-01-08, 2010-01, 200625)
文摘Forest volume, the major component of forest biomass, is an important issue in forest resource monitoring.It is estimated from tree volume tables or equations. Based on tree volume data of 1840 sample trees from Chinese fir (Cunninghamia lanceolata) plantations in Guizhou Province in southwestern China, parallel one- and two-variable tree volume tables and tree height curves for central and other areas were constructed using an error-in-variable modeling method. The results show that, although the one-variable tree volume equations and height curves between the central and other areas were significantly different, the two-variable volume equations were sufficiently close, so that a generalized two-variable tree volume equation could be established for the entire province.
文摘Based on the technique of integration within an ordered product of operators, we derive new bosonic operators, ordering identities by using entangled state representation and the properties of two-variable Hermite polynomials , and vice versa. In doing so, some concise normally (antinormally) ordering operator identities, such as : are obtained.
基金Supported by the President Foundation of Chinese Academy of Scienceby the Specialized Research Fund for the Doctorial Progress of Higher Education of China
文摘By virtue of the technique of integration within Weyl ordered of operators we derive the formula of Weyl ordering expansion of power product of coordinate and momentum operators (√2Q)^m(√2iP) ^τ=:: Hm,r (√2Q, √2iP)::, the introduction of two-variable Hermite polynomial Hm,r brings much convenience to the study of Weyl correspondence.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)
文摘In reference to the Weyl ordering xmpn→ (1/2)m ∑l=0m (ml)Xm-lPnXl , where X and P are coordinate and momentum operator, respectively, this paper examines operators' s-parameterized ordering and its classical correspondence, finds the fundamental function-operator correspondence (1-s/2)(n+m)/2Hm,n(/2/1-sα,/2/1-sα)→αman and its complementary relation anam→(-i)n+m(1-s/2)(m+n)/2:Hm,n(i√2/1-sa,i√2/1-sa),where Hrn,n is the two-variable Hermite polynomial, a, at are bosonic annihilation and creation operators respectively, s is a complex parameter. The s'-ordered operator power-series expansion of s-ordered operator atraan in terms of the two-variable Hermite polynomial is also derived. Application of operators' s-ordering formula in studying displaced- squeezed chaotic field is discussed.
文摘To begin with, in this paper, the governing equations of the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with variable thickness are derived. By using 'the method of two-variable' and introducing four small parameters, the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with linear variable thickness are studied, and the uniformly valid asymptotic solution of Nth-order for epsilon(1) and Mth-order for epsilon(2) are obtained.
文摘By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of Nth-order for ε_1 and Mth-order for ε_2 of the deflection functions and stress function are obtained.
基金the Iran National Science Foundation:INFS under Grant No.95009788 and is also under supplementary support of The University of Guilan,Iran.
文摘Tw o variable Jacobi polynomials,as a two-dimensional basis,are applied to solve a class of temporal fractional partial differential equations.The fractional derivative operators are in the Caputo sense.The operational matrices of the integration of integer and fractional orders are presented.Using these matrices together with the Tau Jacobi method converts the main problem into the corresponding system of algebraic equations.An error bound is obtained in a two-dimensional Jacobi-weighted Sobolev space.Finally,the efficiency of the proposed method is demonstrated by implementing the algorithm to several illustrative examples.Results will be compared witli those obtained from some existing methods.
文摘This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering.