Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emira...Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emirates, Oman, Yemen, southern Jordan, Syria, Iraq, Iran, Afghanistan, Pakistan, and northern India. Its neighboring regions, the Sudano-Zambezian region belonging to the Paleotropical Kingdom and the Mediterranean and Irano-Turanian regions included in the Holarctic Kingdom, share a large portion of their flora with the Saharo-Arabian region. Despite the widespread acknowledgment of the region's global importance for plant diversity, an up to date list of the Saharo-Arabian endemics is still unavailable. The available data are frequently insufficient or out of date at both the whole global and the national scales. Therefore, the present study aims at screening and verifying the Saharo-Arabian endemic plants and determining the phytogeographical distribution of these taxa in the Egyptian flora. Hence, a preliminary list of 429 Saharo-Arabian endemic plants in Egypt was compiled from the available literature. Indeed, by excluding the species that were recorded in any countries or regions outside the Saharo-Arabian region based on different literature, database reviews, and websites, the present study has reduced this number to 126 taxa belonging to 87 genera and 37 families. Regarding the national geographic distribution, South Sinai is the richest region with 83 endemic species compared with other eight phytogeographic regions in Egypt, followed by the Isthmic Desert(the middle of Sinai Peninsula, 53 taxa). Sahara regional subzone(SS1) distributes all the 126 endemic species, Arabian regional subzone(SS2) owns 79 taxa, and Nubo-Sindian subzone(SS3) distributes only 14 endemics. Seven groups were recognized at the fourth level of classification as a result of the application of the two-way indicator species analysis(TWINSPAN) to the Saharo-Arabian endemic species in Egypt, i.e., Ⅰ Asphodelus refractus group, Ⅱ Agathophora alopecuroides var. papillosa group, Ⅲ Anvillea garcinii group, Ⅳ Reseda muricata group, V Agathophora alopecuroides var. alopecuroides group, Ⅵ Scrophularia deserti group, and Ⅶ Astragalus schimperi group. It's crucial to clearly define the Saharo-Arabian endemics and illustrate an updated verified database of these taxa for a given territory for providing future management plans that support the conservation and sustainable use of these valuable species under current thought-provoking devastating impacts of rapid anthropogenic and climate change in this region.展开更多
This study aimed to identify indicator species and explore the most important environmental and management variables contributing to vegetation distribution in a hilly upper dam landscape in Zagros Mountain chain, Ira...This study aimed to identify indicator species and explore the most important environmental and management variables contributing to vegetation distribution in a hilly upper dam landscape in Zagros Mountain chain, Iran. A stratified random sampling method was used to collect topographic, edaphic, management and vegetation data. The density and cover percentage of perennial species were measured quantitatively. Indicator species were identified using the two-way indicator species analysis. Besides calculating physiognomic factors in sample sites, 24 soil samples were collected from 0 to 30 cm of soil depth and analyzed in terms of gravel percentage, texture, saturation moisture, organic matter, pH and electrical conductivity in saturation extract, lime percentage, soluble calcium and magnesium, available phosphorus, Cation Exchange Capacity(CEC) and soluble sodium and potassium. Multivariate techniques including Canonical Correspondence Analysis and Multi-Dimensional Scaling were used to explore the relationships of species with environmental and management variables. Seven plants were identified as indicator species due to being significantly correlated with management(grazing or non-grazing) and edaphic variables such as CEC, soil texture, pH, CaCO3 percentage and physiographic variable including slope, elevation, and convex and concave formations(p < 0.05). Overall, overgrazing and its subsequent effects on soil characteristics, loss of vegetation cover and trampling were found as the major causes of deterioration. Sustainable and integrated management practices such as the implementation of appropriate grazing systems were suggested to enhance soil quality and reduce the accelerated erosion in upper dam zones.展开更多
应用“康乃尔生态学”程序(Cornell ecological program,CEP)中的二歧指示种分析TWINSPAN(Two-WayIndicators Species Analysis)数量分析方法,以不同紫花苜蓿品种的生理生态特性值和牧草产量值为指标对16个紫花苜蓿品种进行分类。结果表...应用“康乃尔生态学”程序(Cornell ecological program,CEP)中的二歧指示种分析TWINSPAN(Two-WayIndicators Species Analysis)数量分析方法,以不同紫花苜蓿品种的生理生态特性值和牧草产量值为指标对16个紫花苜蓿品种进行分类。结果表明:用TWINSPAN可将16个品种划分为7类,并且根据试验站所在地区的干旱半干旱的气候特征,筛选出高产、高水分利用效率、高光能利用效率的3个优良品种,分别为肇东苜蓿、德宝苜蓿和草原2号苜蓿。展开更多
Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspondence analyses (DCCAs) and a two-way indicator species analysis (TWINSPAN). The distributi...Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspondence analyses (DCCAs) and a two-way indicator species analysis (TWINSPAN). The distribution pattern and influential factors of the plant communities were also analyzed by testing elevation, slope, soil characteristics, longitude and latitude of 134 vegetation samples collected by representative plot sampling methods. Results showed that all the 134 vegetation samples could be divided into seven vegetation groups, separately dominated by Robinia pseucdoacacia, Imperata cylindrical, Miscanthus saccharifleus, Suaeda salsa, Aeluropus sinensis, Phragmites australis and Tamarix chinensis. The vegetation distribution pattern was mainly related to elevation, ground water depth and soil characteristics such as salinity and soluble potassium. Among the factors affecting distribution pattern of the plant communities, the species matrix explained by non-spatial environmental variation accounts for 45.2% of total variation. Spatial variation and spatial-structured environmental variation explain 11.8%, and 2.2%, respectively. Remained 40.8% of undetermined variation is attributed to biological and stochastic factors.展开更多
在数字化长潭自然保护区地图的基础上,均匀设置66个标准样地进行群落调查,根据调查数据进行双向指示种分析(Two-way indicator species analysis,TWINSPAN).结果表明:保护区内主要包括常绿阔叶林、杉木林、针阔混交林、以及杉木-马尾松...在数字化长潭自然保护区地图的基础上,均匀设置66个标准样地进行群落调查,根据调查数据进行双向指示种分析(Two-way indicator species analysis,TWINSPAN).结果表明:保护区内主要包括常绿阔叶林、杉木林、针阔混交林、以及杉木-马尾松共优针叶林4种群落类型;每种类型按树种组分别计算其蓄积量、生物量和碳储量,并与面积加权后得出该群落的碳密度(单位面积碳储量);4种群落碳密度依次为33.94、34.70、51.00和42.05t.hm-2;长潭自然保护区碳储量总计为2.265×105 t,平均碳密度为44.77 t.hm-2,远大于广东省乔木林平均碳密度(25.47 t.hm-2).相关分析表明,碳密度主要受树高、胸径和群落演替时间的影响,与海拔、坡度等地形因子和林木密度没有明显的相关关系(P>0.05).展开更多
Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspon-dence analyses(DCCAs) and a two-way indicator species analysis(TWINSPAN).The distribution pat...Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspon-dence analyses(DCCAs) and a two-way indicator species analysis(TWINSPAN).The distribution pattern and influential factors of the plant communities were also analyzed by testing elevation, slope, soil characteristics, longitude and latitude of 134 vegetation samples collected by representative plot sampling methods.Results showed that all the 134 vegetation samples could be divided into seven vegetation groups, separately dominated by Robinia pseucdoacacia, Imperata cylindrical, Miscanthus saccharifleus, Suaeda salsa, Aeluropus sinensis, Phragmites australis and Tamarix chinensis.The vegetation distribution pattern was mainly related to elevation, ground water depth and soil characteristics such as salinity and soluble potassium.Among the factors affecting distribution pattern of the plant communities, the species matrix explained by non-spatial environmental variation accounts for 45.2% of total variation.Spatial variation and spatial-structured environmental variation explain 11.8%, and 2.2%, respectively.Remained 40.8% of undetermined variation is attributed to biological and stochastic factors.展开更多
文摘Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emirates, Oman, Yemen, southern Jordan, Syria, Iraq, Iran, Afghanistan, Pakistan, and northern India. Its neighboring regions, the Sudano-Zambezian region belonging to the Paleotropical Kingdom and the Mediterranean and Irano-Turanian regions included in the Holarctic Kingdom, share a large portion of their flora with the Saharo-Arabian region. Despite the widespread acknowledgment of the region's global importance for plant diversity, an up to date list of the Saharo-Arabian endemics is still unavailable. The available data are frequently insufficient or out of date at both the whole global and the national scales. Therefore, the present study aims at screening and verifying the Saharo-Arabian endemic plants and determining the phytogeographical distribution of these taxa in the Egyptian flora. Hence, a preliminary list of 429 Saharo-Arabian endemic plants in Egypt was compiled from the available literature. Indeed, by excluding the species that were recorded in any countries or regions outside the Saharo-Arabian region based on different literature, database reviews, and websites, the present study has reduced this number to 126 taxa belonging to 87 genera and 37 families. Regarding the national geographic distribution, South Sinai is the richest region with 83 endemic species compared with other eight phytogeographic regions in Egypt, followed by the Isthmic Desert(the middle of Sinai Peninsula, 53 taxa). Sahara regional subzone(SS1) distributes all the 126 endemic species, Arabian regional subzone(SS2) owns 79 taxa, and Nubo-Sindian subzone(SS3) distributes only 14 endemics. Seven groups were recognized at the fourth level of classification as a result of the application of the two-way indicator species analysis(TWINSPAN) to the Saharo-Arabian endemic species in Egypt, i.e., Ⅰ Asphodelus refractus group, Ⅱ Agathophora alopecuroides var. papillosa group, Ⅲ Anvillea garcinii group, Ⅳ Reseda muricata group, V Agathophora alopecuroides var. alopecuroides group, Ⅵ Scrophularia deserti group, and Ⅶ Astragalus schimperi group. It's crucial to clearly define the Saharo-Arabian endemics and illustrate an updated verified database of these taxa for a given territory for providing future management plans that support the conservation and sustainable use of these valuable species under current thought-provoking devastating impacts of rapid anthropogenic and climate change in this region.
基金Isfahan University of Technology for its financial support and laboratory facilities
文摘This study aimed to identify indicator species and explore the most important environmental and management variables contributing to vegetation distribution in a hilly upper dam landscape in Zagros Mountain chain, Iran. A stratified random sampling method was used to collect topographic, edaphic, management and vegetation data. The density and cover percentage of perennial species were measured quantitatively. Indicator species were identified using the two-way indicator species analysis. Besides calculating physiognomic factors in sample sites, 24 soil samples were collected from 0 to 30 cm of soil depth and analyzed in terms of gravel percentage, texture, saturation moisture, organic matter, pH and electrical conductivity in saturation extract, lime percentage, soluble calcium and magnesium, available phosphorus, Cation Exchange Capacity(CEC) and soluble sodium and potassium. Multivariate techniques including Canonical Correspondence Analysis and Multi-Dimensional Scaling were used to explore the relationships of species with environmental and management variables. Seven plants were identified as indicator species due to being significantly correlated with management(grazing or non-grazing) and edaphic variables such as CEC, soil texture, pH, CaCO3 percentage and physiographic variable including slope, elevation, and convex and concave formations(p < 0.05). Overall, overgrazing and its subsequent effects on soil characteristics, loss of vegetation cover and trampling were found as the major causes of deterioration. Sustainable and integrated management practices such as the implementation of appropriate grazing systems were suggested to enhance soil quality and reduce the accelerated erosion in upper dam zones.
文摘应用“康乃尔生态学”程序(Cornell ecological program,CEP)中的二歧指示种分析TWINSPAN(Two-WayIndicators Species Analysis)数量分析方法,以不同紫花苜蓿品种的生理生态特性值和牧草产量值为指标对16个紫花苜蓿品种进行分类。结果表明:用TWINSPAN可将16个品种划分为7类,并且根据试验站所在地区的干旱半干旱的气候特征,筛选出高产、高水分利用效率、高光能利用效率的3个优良品种,分别为肇东苜蓿、德宝苜蓿和草原2号苜蓿。
基金Foundation project: This study was financially supported by the Na- tional Natural Science Foundation of China (No. 40771172) and the orientation project of the Chinese Academy of Sciences (No. kzcx2-yw-308)
文摘Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspondence analyses (DCCAs) and a two-way indicator species analysis (TWINSPAN). The distribution pattern and influential factors of the plant communities were also analyzed by testing elevation, slope, soil characteristics, longitude and latitude of 134 vegetation samples collected by representative plot sampling methods. Results showed that all the 134 vegetation samples could be divided into seven vegetation groups, separately dominated by Robinia pseucdoacacia, Imperata cylindrical, Miscanthus saccharifleus, Suaeda salsa, Aeluropus sinensis, Phragmites australis and Tamarix chinensis. The vegetation distribution pattern was mainly related to elevation, ground water depth and soil characteristics such as salinity and soluble potassium. Among the factors affecting distribution pattern of the plant communities, the species matrix explained by non-spatial environmental variation accounts for 45.2% of total variation. Spatial variation and spatial-structured environmental variation explain 11.8%, and 2.2%, respectively. Remained 40.8% of undetermined variation is attributed to biological and stochastic factors.
基金supported by the Na-tional Natural Science Foundation of China (No. 40771172)the orientation project of the Chinese Academy of Sciences (No. kzcx2-yw-308)
文摘Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspon-dence analyses(DCCAs) and a two-way indicator species analysis(TWINSPAN).The distribution pattern and influential factors of the plant communities were also analyzed by testing elevation, slope, soil characteristics, longitude and latitude of 134 vegetation samples collected by representative plot sampling methods.Results showed that all the 134 vegetation samples could be divided into seven vegetation groups, separately dominated by Robinia pseucdoacacia, Imperata cylindrical, Miscanthus saccharifleus, Suaeda salsa, Aeluropus sinensis, Phragmites australis and Tamarix chinensis.The vegetation distribution pattern was mainly related to elevation, ground water depth and soil characteristics such as salinity and soluble potassium.Among the factors affecting distribution pattern of the plant communities, the species matrix explained by non-spatial environmental variation accounts for 45.2% of total variation.Spatial variation and spatial-structured environmental variation explain 11.8%, and 2.2%, respectively.Remained 40.8% of undetermined variation is attributed to biological and stochastic factors.