This article proposes and demonstrates a retrodirective array(RDA)for two-way wireless communication with automatic beam tracking.The proposed RDA is enabled by specifically designed chips made using a domestic comple...This article proposes and demonstrates a retrodirective array(RDA)for two-way wireless communication with automatic beam tracking.The proposed RDA is enabled by specifically designed chips made using a domestic complementary metal-oxide semiconductor(CMOS)process.The highly integrated CMOS chip includes a receiving(Rx)chain,a transmitting(Tx)chain,and a unique tracking phaselocked loop(PLL)for the crucial conjugated phase recovery in the RDA.This article also proposes a method to reduce the beam pointing error(BPE)in a conventional RDA.To validate the above ideas simply yet without loss of generality,a 2.4 GHz RDA is demonstrated through two-way communication links between the Rx and Tx chains,and an on-chip quadrature coupler is designed to achieve a nonretrodirective signal suppression of 23 dBc.The experimental results demonstrate that the proposed RDA,which incorporates domestically manufactured low-cost 0.18 lm CMOS chips,is capable of automatically tracking beams covering±40with a reduced BPE.Each CMOS chip in the RDA has a compact size of 4.62 mm^(2) and a low power consumption of 0.15 W.To the best of the authors’knowledge,this is the first research to demonstrate an RDA with a fully customized CMOS chip for wireless communication with automatic beam tracking。展开更多
Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,becaus...Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,because the MCvD is unreliable and there exists molecular noise and inter symbol interference(ISI),cooperative nano-relays can acquire the reliability for drug delivery to targeted diseased cells,especially if the separation distance between the nano transmitter and nano receiver is increased.In this work,we propose an approach for optimizing the performance of the nano system using cooperative molecular communications with a nano relay scheme,while accounting for blood flow effects in terms of drift velocity.The fractions of the molecular drug that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative optimization problem solved by theModified Central Force Optimization(MCFO)algorithm.Unlike the previous work,the probability of bit error is expressed in a closed-form expression.It is used as an objective function to determine the optimal velocity of the drug molecules and the detection threshold at the nano receiver.The simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,detection threshold,location of the nano-relay in the proposed nano system,and molecular drug budget.展开更多
In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of sci...In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of scientific instruments on board.The system design of Queqiao-2,including mission orbit and transfer orbit design,configuration and layout design,housekeeping and information flow design,power supply and distribution design,GNC and propulsion system design,communication links design,etc.,was accomplished through comprehensive tradeoff and evaluation on technical maturity,availability,schedule,cost,and so on.With a view to reducing development risk,both the platform and relay communication payloads were developed based on significant heritage from previous Queqiao relay satellite and other relevant spacecraft.Queqiao-2 features flexible system architecture to support multiple frequencies,modulations,data rates and software reconfigurations to meet new user requirements.Subsequent to a successful launch on March 20,2024,by means of 5 orbit maneuvers,Queqiao-2 was inserted into a highly elliptical frozen mission orbit around the moon with a 24h period on schedule.Following on-orbit tests and calibrations,Queqiao-2 has possessed the capacity to provide reliable relay communication services to multiple lunar exploration missions,as well as the capacity to perform scientific observations.Under the support of Queqiao-2,Chang′e-6 achieved its ambitious mission goal to collect and return samples from the moon′s mysterious far side.In the meanwhile,Queqiao-2 has also paved the way for the following Chinese lunar exploration missions including Chang′e-7 and Chang′e-8.The design life time of Queqiao-2 is more than 8 years.Benefit from flexibility and extensibility of relay communication system design,it is convenient to provide relay communication services for future lunar exploration missions of both China and other countries.In addition,innovative scientific observations would be performed during the period that no relay communication task is arranged.The system design of Queqiao-2 reflects the development philosophy of technical innovations and inheritance integration.Based on highly flexible and extensible system architecture,multiple and concurrent relay communication mission requirements can be met.It can provide strong supports for future lunar exploration missions.Successful launching,orbit entering and on-orbit tests of Queqiao-2 verified the correct design principle and versatility.By means of Queqiao-2,more innovative scientific outcomes are anticipated and lunar exploration activities can be facilitated.展开更多
The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In...The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In this study,we apply the TWCC method to improve the performance of reference-frame-independent quantum key distribution(RFI-QKD),and analyze the influence of the TWCC method on the performance of decoy-state RFI-QKD in both asymptotic and non-asymptotic cases.Our numerical simulation results show that the TWCC method is able to extend the maximal transmission distance from 175 km to 198 km and improve the tolerable bit error rate from 10.48%to 16.75%.At the same time,the performance of RFI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are considered.We conclude that RFI-QKD with the TWCC method is of practical interest.展开更多
With the rapid development and application of energy harvesting technology,it has become a prominent research area due to its significant benefits in terms of green environmental protection,convenience,and high safety...With the rapid development and application of energy harvesting technology,it has become a prominent research area due to its significant benefits in terms of green environmental protection,convenience,and high safety and efficiency.However,the uneven energy collection and consumption among IoT devices at varying distances may lead to resource imbalance within energy harvesting networks,thereby resulting in low energy transmission efficiency.To enhance the energy transmission efficiency of IoT devices in energy harvesting,this paper focuses on the utilization of collaborative communication,along with pricing-based incentive mechanisms and auction strategies.We propose a dynamic relay selection scheme,including a ladder pricing mechanism based on energy level and a Kuhn-Munkre Algorithm based on an auction theory employing a negotiation mechanism,to encourage more IoT devices to participate in the collaboration process.Simulation results demonstrate that the proposed algorithm outperforms traditional algorithms in terms of improving the energy efficiency of the system.展开更多
In this paper,we investigate the feasibility and performance of the covert communication with a spectrum sharing relay in the finite blocklength regime.Specifically,the relay opportunistically forwards the source'...In this paper,we investigate the feasibility and performance of the covert communication with a spectrum sharing relay in the finite blocklength regime.Specifically,the relay opportunistically forwards the source's messages to the primary receiver or conveys the covert messages to its own receiver via the sharing spectrum,while the warden attempts to detect the transmission.First,we derive a lower bound on the covertness constraint,and the analytical expressions of both the primary average effective covert throughput(AECT)and sum AECT are presented by considering the overall decoding error performance.Then,we formulate two optimization problems to maximize the primary and sum AECT respectively by optimizing the blocklength and the transmit power at the source and the relay.Our examinations show that there exists an optimal blocklength to maximize the primary and sum AECT.Besides,it is revealed that,to maximize the primary AECT,the optimal transmit power of each hop increases as its channel quality deteriorates.Furthermore,in the optimization for maximizing the sum AECT,the optimal transmit power at the source equals to zero when the channel quality from relay to the secondary receiver is not weaker than that from relay to the primary receiver.展开更多
In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)ca...In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)can be viewed as data collecting centers.To enhance the message exchange rate between S1 and S2,a problem of maximizing minimum rate is cast,where the variables,namely AF relay beamforming matrix and IRS phase shifts of two time slots,need to be optimized.To achieve a maximum rate,a low-complexity alternately iterative(AI)scheme based on zero forcing and successive convex approximation(LC-ZF-SCA)algorithm is presented.To obtain a significant rate enhancement,a high-performance AI method based on one step,semidefinite programming and penalty SCA(ONSSDP-PSCA)is proposed.Simulation results show that by the proposed LC-ZF-SCA and ONS-SDP-PSCA methods,the rate of the IRS-and-UAV-assisted AF relay network surpass those of with random phase and only AF relay networks.Moreover,ONS-SDP-PSCA perform better than LC-ZF-SCA in aspect of rate.展开更多
This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)node...This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.展开更多
Maritime communications with sea surface reflections and sea wave occlusions are susceptible to jamming attacks due to the wide geographical area and intensive wireless communication services.Unmanned Aerial Vehicles(...Maritime communications with sea surface reflections and sea wave occlusions are susceptible to jamming attacks due to the wide geographical area and intensive wireless communication services.Unmanned Aerial Vehicles(UAVs)help relay messages to improve communication performance,but the relay policy that depends on the rapidly changing maritime environments is difficult to optimize.In this paper,a reinforcement learning-based UAV relay policy for maritime communications is proposed to resist jamming attacks.Based on previous transmission performance,the relay location,the received power of the transmitted signal and the received jamming power,this scheme optimizes the UAV trajectory and relay power to save the energy consumption and decrease the Bit-Error-Rate(BER)of the maritime signals.A deep reinforcement learning-based scheme is also proposed,which designs a deep neural network with dueling architecture to further improve the communication performance and computational complexity.The performance bounds regarding the signal to interference plus noise ratio,energy consumption and the communication utility are provided based on the Nash equilibrium of the game against jamming,and the computational complexity of the proposed schemes is analyzed.Simulation results show that the proposed schemes improve the energy efficiency and decrease the BER compared with the benchmark.展开更多
Multi-hop device-to-device(D2D) communication can significantly improve the system performance. This paper studied the outage performance of D2 D communication assisted by another D2 D user using three-timeslot two-wa...Multi-hop device-to-device(D2D) communication can significantly improve the system performance. This paper studied the outage performance of D2 D communication assisted by another D2 D user using three-timeslot two-way amplify-and-forward relaying protocol over Rayleigh fading channels. Considering the co-channel interference from cellular user at the D2 D node,the approximate expression for the overall outage probability was derived. Furthermore,a power allocation optimum method to minimize the outage probability was developed,and the closed form expression for the optimal power allocation coefficient at the relay was derived. Simulation results demonstrate accuracy of the derived outage probability expressions. Simulation results also demonstrate that the outage performance can be improved using the proposed optimal power allocation method.展开更多
Aiming at the energy consumption of long-distance device-to-device(D2D) devices for two-way communications in a cellular network,this paper proposes a strategy that combines two-way relay technology(TWRT) and simultan...Aiming at the energy consumption of long-distance device-to-device(D2D) devices for two-way communications in a cellular network,this paper proposes a strategy that combines two-way relay technology(TWRT) and simultaneous wireless information and power transfer(SWIPT) technology to achieve high energy efficiency(EE) communication.The scheme first establishes a fractional programming problem to maximize EE of D2D,and transforms it into a non-fractional optimization problem that can be solved easily.Then the problem is divided into three sub-problems:power control,power splitting ratios optimization,and relay selection.In order to maximize EE of the D2D pair,the Dinkelbach iterative algorithm is used to optimize the transmitted power of two D2D devices simultaneously;the one-dimensional search algorithm is proposed to optimize power splitting ratios;an improved optimal relay selection scheme based on EE is proposed to select relay.Finally,experiments are carried out on the Matlab simulation platform.The simulation results show that the proposed algorithm has faster convergence.Compared with the one-way relay transmission and fixed relay algorithms,the proposed scheme has higher EE.展开更多
In this paper, we investigate a two-way relay network consisting of two sources, multiple cooperative relays and an eavesdropper. To enhance secure communications, a new relay chatting based on transmission scheme is ...In this paper, we investigate a two-way relay network consisting of two sources, multiple cooperative relays and an eavesdropper. To enhance secure communications, a new relay chatting based on transmission scheme is proposed. Specifically, the proposed scheme selects a best relay that maximize the sum mutual information among the sources to forward the sources’ signals using an amplify-and-forward protocol, and the remaining relays transmit interference signals to confuse the eavesdropper via distributed beam forming. It can be found that the proposed scheme with relay chatting does not require the knowledge of the eavesdropper’s channel, and outperforms the joint relay and jammer selection scheme, which introduces the interference into the sources. Numerical results show that the secrecy outage probability of the proposed scheme converges to zero as the transmit power increases.展开更多
In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from...In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from the destination indicates failure of the direct transmission. The proposed scheme selects the optimal relay and its corresponding transmission power in each time slot based on channel condition and residual ener- gy with the objective of minimizing energy con- sumption and extending network lifetime. In the study, the f'mite-state Markov channel model is used to characterize the correlation structure of channel fading in wireless networks, and the pro- cedure of relay selection and transmission power decision is formulated as a M arkov decision process. Numerical and simulation results show that the proposed scheme consumes less energy and prolongs the network lifetime.展开更多
Non-orthogonal multiple access(NOMA)is considered as one of the key technologies for the fifth generation(5G)wireless communications.The integration of NOMA and device-to-device(D2D)communications has recently attract...Non-orthogonal multiple access(NOMA)is considered as one of the key technologies for the fifth generation(5G)wireless communications.The integration of NOMA and device-to-device(D2D)communications has recently attracted wide attention.In this paper,a relaying D2D communications assisted with cooperative relaying systems using NOMA(DRC-NOMA)is considered.We analyze the ergodic sum-rate for the proposed system and then derive the closed-form expressions.In addition,an optimal power allocation strategy maximizing the ergodic sum-rate is proposed based on these analysis results.Numerical results show the good agreement between the results of analysis and Monte Carlo method.The proposed DRC-NOMA has a great improvement of the ergodic sum-rate in the small regime of average channel gain of D2D pair.展开更多
The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-determinist...The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-deterministic polynomial hard(NP-hard)multi-objective optimization problem,instead of generating a Pareto solution,this work focuses on considering both objectives at the same level so as to achieve a balanced solution between them.Based on the property that agents connected to the same UAV are a cluster,two clustering-based algorithms,M-K-means(MKM)and modified fast search and find density of peaks(MFSFDP)methods,are first proposed.Since the former algorithm requires too much computational time and the latter one requires too many relays,an algorithm for the balanced network performance and relay number(BPN)is proposed by discretizing the area to avoid missing the optimal relay positions and defining a new local density function to reflect the network performance metric.Simulation results demonstrate that the proposed algorithms are feasible and effective.Comparisons between these algorithms show that the BPN algorithm uses fewer relay UAVs than the MFSFDP and classic set-covering based algorithm,and its computational time is far less than the MKM algorithm.展开更多
In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy...In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy outage probability is obtained.Moreover,to get more information on the secrecy outage probability in a high signalto-noise regime,the asymptotic analysis along with the secrecy diversity order and secrecy coding gain for the secrecy outage probability are also further obtained,which presents a fast method to evaluate the impact of system parameters and hardware impairments on the considered network.Finally,Monte Carlo simulation results are provided to show the efficiency of the theoretical analysis.展开更多
Free space optical(FSO)communication has recently aroused great interest in academia due to its unique features,such as large transmission band,high data rates,and strong anti-electromagnetic interference.With the aim...Free space optical(FSO)communication has recently aroused great interest in academia due to its unique features,such as large transmission band,high data rates,and strong anti-electromagnetic interference.With the aim of evaluating the performance of an FSO communication system and extending the line-of-sight transmission distance,we propose an unmanned aerial vehicle(UAV)-assisted dual-hop FSO communication system equipped with amplifyand-forward protocol at the relay node.Specifically,we consider impairments of atmospheric absorption,pointing errors,atmospheric turbulence,and link interruptions due to angle-of-arrival fluctuations in the relay system.The Gamma-Gamma and Malaga distributions are used to model the influence of atmospheric turbulence on the source-to-UAV and UAVto-destination links,respectively.We derive closedform expressions of the probability density function(PDF)and cumulative distribution function(CDF)for the proposed communication system,in terms of the Meijer-G function.Based on the precise PDF and CDF,analytical expressions for the outage probability,average bit error rate,and ergodic capacity are proposed with the aid of the extended generalized bivariate Fox’s H function.Finally,we show that there is a match between the analytical results and numerical results,and we analyze the influence of the system and channel parameters on the performance.展开更多
The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) s...The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) satellite network relays. According to the geographical distribution of the forthcoming Chinese Deep Space Measuring and Controlling Network (DSMCN), two networking schemes are proposed and two elevation angle optimization models are established for locating GEO relay satellites. To analyze the dynamic connectivity, a dynamic network model is constructed with respect to the time-varying characteristics of cislunar trunk links. The advantages of the two proposed schemes, in terms of the Connectivity Rate (CR), Interruption Frequency (IF), and Average Length of Connecting Duration (ALCD), are corroborated by several simulations. In the case of the lunar polar orbit constellation case, the gains in the performance of scheme I are observed to be 134.55%, 117.03%, and 217.47% compared with DSMCN for three evaluation indicators, and the gains in the performance of scheme II are observed to be 238. 22%, 240.40%, and 572.71%. The results validate that the connectivity of GEO satellites outperforms that of earth facilities significantly and schemes based on GEO satellite relays are promising options for cislunar multi-hop communication networking.展开更多
This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration...This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration of the UAV and the information-causality constraints into consideration,the energy-efficiency of the system under investigation is maximized by jointly optimizing the UAV’s trajectory and the individual transmit power levels of the source and the UAV relay nodes.The optimization problem is non-convex and thus cannot be solved directly.Therefore,it is decoupled into two subproblems.One sub-problem is for the transmit power control at the source and the UAV relay nodes,and the other aims at optimizing the UAV s flight trajectory.By using the Lagrangian dual and Dinkelbach methods,the two sub-problems are solved,leading to an iterative algorithm for the joint design of transmit power control and trajectory optimization.Computer simulations demonstrated that by conducting the proposed algorithm,the flight trajectory of the UAV and the individual transmit power levels of the nodes can be flexibly adjusted according to the system conditions,and the proposed algorithm can achieve signiflcantly higher energy efficiency as compared with the other benchmark schemes.展开更多
Measurement-device-independent quantum key distribution (MDI-QKD) is proven to be immune to all the de- tector side channel attacks. With two symmetric quantum channels, the maximal transmission distance can be doub...Measurement-device-independent quantum key distribution (MDI-QKD) is proven to be immune to all the de- tector side channel attacks. With two symmetric quantum channels, the maximal transmission distance can be doubled when compared with the prepare-and-measure QKD. An interesting question is whether the transmission distance can be extended further. In this work, we consider the contributions of the two-way local operations and classical communications to the key generation rate and transmission distance of the MDI-QKD. Our numerical results show that the secure transmission distances are increased by about 12kin and 8 km when the 1 13 and the 2 B steps are implemented, respectively.展开更多
基金supported in part by the National Key Research and Development Program of China(2019YFB2204701)in part by the National Natural Science Foundation of China(61831006,62022023,and 62250610223)in part by the Big Data Computing Center at Southeast University for numerical calculation.
文摘This article proposes and demonstrates a retrodirective array(RDA)for two-way wireless communication with automatic beam tracking.The proposed RDA is enabled by specifically designed chips made using a domestic complementary metal-oxide semiconductor(CMOS)process.The highly integrated CMOS chip includes a receiving(Rx)chain,a transmitting(Tx)chain,and a unique tracking phaselocked loop(PLL)for the crucial conjugated phase recovery in the RDA.This article also proposes a method to reduce the beam pointing error(BPE)in a conventional RDA.To validate the above ideas simply yet without loss of generality,a 2.4 GHz RDA is demonstrated through two-way communication links between the Rx and Tx chains,and an on-chip quadrature coupler is designed to achieve a nonretrodirective signal suppression of 23 dBc.The experimental results demonstrate that the proposed RDA,which incorporates domestically manufactured low-cost 0.18 lm CMOS chips,is capable of automatically tracking beams covering±40with a reduced BPE.Each CMOS chip in the RDA has a compact size of 4.62 mm^(2) and a low power consumption of 0.15 W.To the best of the authors’knowledge,this is the first research to demonstrate an RDA with a fully customized CMOS chip for wireless communication with automatic beam tracking。
基金the Researchers Supporting Project Number(RSP2023R 102)King Saud University,Riyadh,Saudi Arabia.
文摘Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,because the MCvD is unreliable and there exists molecular noise and inter symbol interference(ISI),cooperative nano-relays can acquire the reliability for drug delivery to targeted diseased cells,especially if the separation distance between the nano transmitter and nano receiver is increased.In this work,we propose an approach for optimizing the performance of the nano system using cooperative molecular communications with a nano relay scheme,while accounting for blood flow effects in terms of drift velocity.The fractions of the molecular drug that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative optimization problem solved by theModified Central Force Optimization(MCFO)algorithm.Unlike the previous work,the probability of bit error is expressed in a closed-form expression.It is used as an objective function to determine the optimal velocity of the drug molecules and the detection threshold at the nano receiver.The simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,detection threshold,location of the nano-relay in the proposed nano system,and molecular drug budget.
文摘In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of scientific instruments on board.The system design of Queqiao-2,including mission orbit and transfer orbit design,configuration and layout design,housekeeping and information flow design,power supply and distribution design,GNC and propulsion system design,communication links design,etc.,was accomplished through comprehensive tradeoff and evaluation on technical maturity,availability,schedule,cost,and so on.With a view to reducing development risk,both the platform and relay communication payloads were developed based on significant heritage from previous Queqiao relay satellite and other relevant spacecraft.Queqiao-2 features flexible system architecture to support multiple frequencies,modulations,data rates and software reconfigurations to meet new user requirements.Subsequent to a successful launch on March 20,2024,by means of 5 orbit maneuvers,Queqiao-2 was inserted into a highly elliptical frozen mission orbit around the moon with a 24h period on schedule.Following on-orbit tests and calibrations,Queqiao-2 has possessed the capacity to provide reliable relay communication services to multiple lunar exploration missions,as well as the capacity to perform scientific observations.Under the support of Queqiao-2,Chang′e-6 achieved its ambitious mission goal to collect and return samples from the moon′s mysterious far side.In the meanwhile,Queqiao-2 has also paved the way for the following Chinese lunar exploration missions including Chang′e-7 and Chang′e-8.The design life time of Queqiao-2 is more than 8 years.Benefit from flexibility and extensibility of relay communication system design,it is convenient to provide relay communication services for future lunar exploration missions of both China and other countries.In addition,innovative scientific observations would be performed during the period that no relay communication task is arranged.The system design of Queqiao-2 reflects the development philosophy of technical innovations and inheritance integration.Based on highly flexible and extensible system architecture,multiple and concurrent relay communication mission requirements can be met.It can provide strong supports for future lunar exploration missions.Successful launching,orbit entering and on-orbit tests of Queqiao-2 verified the correct design principle and versatility.By means of Queqiao-2,more innovative scientific outcomes are anticipated and lunar exploration activities can be facilitated.
基金supported by the National Natural Science Foundation of China(Grant Nos.61505261,62101597,61605248,and 61675235)the National Key Research and Development Program of China(Grant No.2020YFA0309702)+2 种基金the China Postdoctoral Science Foundation(Grant No.2021M691536)the Natural Science Foundation of Henan Province(Grant Nos.202300410534 and 202300410532)the Anhui Initiative in Quantum Information Technologies.
文摘The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In this study,we apply the TWCC method to improve the performance of reference-frame-independent quantum key distribution(RFI-QKD),and analyze the influence of the TWCC method on the performance of decoy-state RFI-QKD in both asymptotic and non-asymptotic cases.Our numerical simulation results show that the TWCC method is able to extend the maximal transmission distance from 175 km to 198 km and improve the tolerable bit error rate from 10.48%to 16.75%.At the same time,the performance of RFI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are considered.We conclude that RFI-QKD with the TWCC method is of practical interest.
基金funded by the Researchers Supporting Project Number RSPD2024R681,King Saud University,Riyadh,Saudi Arabia.
文摘With the rapid development and application of energy harvesting technology,it has become a prominent research area due to its significant benefits in terms of green environmental protection,convenience,and high safety and efficiency.However,the uneven energy collection and consumption among IoT devices at varying distances may lead to resource imbalance within energy harvesting networks,thereby resulting in low energy transmission efficiency.To enhance the energy transmission efficiency of IoT devices in energy harvesting,this paper focuses on the utilization of collaborative communication,along with pricing-based incentive mechanisms and auction strategies.We propose a dynamic relay selection scheme,including a ladder pricing mechanism based on energy level and a Kuhn-Munkre Algorithm based on an auction theory employing a negotiation mechanism,to encourage more IoT devices to participate in the collaboration process.Simulation results demonstrate that the proposed algorithm outperforms traditional algorithms in terms of improving the energy efficiency of the system.
基金supported by National Natural Science Foundation of China(No.62071486)Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu Province,China(BK20212001)Key Research and Development Program of Jiangsu Province Key Project and Topics,China(2019B010157001)。
文摘In this paper,we investigate the feasibility and performance of the covert communication with a spectrum sharing relay in the finite blocklength regime.Specifically,the relay opportunistically forwards the source's messages to the primary receiver or conveys the covert messages to its own receiver via the sharing spectrum,while the warden attempts to detect the transmission.First,we derive a lower bound on the covertness constraint,and the analytical expressions of both the primary average effective covert throughput(AECT)and sum AECT are presented by considering the overall decoding error performance.Then,we formulate two optimization problems to maximize the primary and sum AECT respectively by optimizing the blocklength and the transmit power at the source and the relay.Our examinations show that there exists an optimal blocklength to maximize the primary and sum AECT.Besides,it is revealed that,to maximize the primary AECT,the optimal transmit power of each hop increases as its channel quality deteriorates.Furthermore,in the optimization for maximizing the sum AECT,the optimal transmit power at the source equals to zero when the channel quality from relay to the secondary receiver is not weaker than that from relay to the primary receiver.
基金supported in part by the National Natural Science Foundation of China (Nos.U22A2002, and 62071234)the Hainan Province Science and Technology Special Fund (ZDKJ2021022)+1 种基金the Scientific Research Fund Project of Hainan University under Grant KYQD(ZR)-21008the Collaborative Innovation Center of Information Technology, Hainan University (XTCX2022XXC07)
文摘In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)can be viewed as data collecting centers.To enhance the message exchange rate between S1 and S2,a problem of maximizing minimum rate is cast,where the variables,namely AF relay beamforming matrix and IRS phase shifts of two time slots,need to be optimized.To achieve a maximum rate,a low-complexity alternately iterative(AI)scheme based on zero forcing and successive convex approximation(LC-ZF-SCA)algorithm is presented.To obtain a significant rate enhancement,a high-performance AI method based on one step,semidefinite programming and penalty SCA(ONSSDP-PSCA)is proposed.Simulation results show that by the proposed LC-ZF-SCA and ONS-SDP-PSCA methods,the rate of the IRS-and-UAV-assisted AF relay network surpass those of with random phase and only AF relay networks.Moreover,ONS-SDP-PSCA perform better than LC-ZF-SCA in aspect of rate.
基金supported in part by the National Natural Science Foundation of China under Grant 61971450in part by the Hunan Provincial Science and Technology Project Foundation under Grant 2018TP1018+1 种基金in part by the Natural Science Foundation of Hunan Province under Grant 2018JJ2533in part by Hunan Province College Students Research Learning and Innovative Experiment Project under Grant S202110542056。
文摘This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.
基金This work was supported in part by the Funds of the National Natural Science Foundation of China under Grant(U21A20444,61971366)in part by the Fundamental Research Funds for the central universities No.20720210073.
文摘Maritime communications with sea surface reflections and sea wave occlusions are susceptible to jamming attacks due to the wide geographical area and intensive wireless communication services.Unmanned Aerial Vehicles(UAVs)help relay messages to improve communication performance,but the relay policy that depends on the rapidly changing maritime environments is difficult to optimize.In this paper,a reinforcement learning-based UAV relay policy for maritime communications is proposed to resist jamming attacks.Based on previous transmission performance,the relay location,the received power of the transmitted signal and the received jamming power,this scheme optimizes the UAV trajectory and relay power to save the energy consumption and decrease the Bit-Error-Rate(BER)of the maritime signals.A deep reinforcement learning-based scheme is also proposed,which designs a deep neural network with dueling architecture to further improve the communication performance and computational complexity.The performance bounds regarding the signal to interference plus noise ratio,energy consumption and the communication utility are provided based on the Nash equilibrium of the game against jamming,and the computational complexity of the proposed schemes is analyzed.Simulation results show that the proposed schemes improve the energy efficiency and decrease the BER compared with the benchmark.
基金supported by the National High Technology Research and Development Program of China(863 program) (No.2014AA01A705)partly supported by National Natural Science Foundation of China (No. 61271236)+1 种基金the Natural Science Foundation of Jiangsu Province (No. BK20130875)Project of Key Laboratory of Wireless Communications of Jiangsu Province (No.NK214001)
文摘Multi-hop device-to-device(D2D) communication can significantly improve the system performance. This paper studied the outage performance of D2 D communication assisted by another D2 D user using three-timeslot two-way amplify-and-forward relaying protocol over Rayleigh fading channels. Considering the co-channel interference from cellular user at the D2 D node,the approximate expression for the overall outage probability was derived. Furthermore,a power allocation optimum method to minimize the outage probability was developed,and the closed form expression for the optimal power allocation coefficient at the relay was derived. Simulation results demonstrate accuracy of the derived outage probability expressions. Simulation results also demonstrate that the outage performance can be improved using the proposed optimal power allocation method.
基金Supported by the National Natural Science Foundation of China (No.61561031)。
文摘Aiming at the energy consumption of long-distance device-to-device(D2D) devices for two-way communications in a cellular network,this paper proposes a strategy that combines two-way relay technology(TWRT) and simultaneous wireless information and power transfer(SWIPT) technology to achieve high energy efficiency(EE) communication.The scheme first establishes a fractional programming problem to maximize EE of D2D,and transforms it into a non-fractional optimization problem that can be solved easily.Then the problem is divided into three sub-problems:power control,power splitting ratios optimization,and relay selection.In order to maximize EE of the D2D pair,the Dinkelbach iterative algorithm is used to optimize the transmitted power of two D2D devices simultaneously;the one-dimensional search algorithm is proposed to optimize power splitting ratios;an improved optimal relay selection scheme based on EE is proposed to select relay.Finally,experiments are carried out on the Matlab simulation platform.The simulation results show that the proposed algorithm has faster convergence.Compared with the one-way relay transmission and fixed relay algorithms,the proposed scheme has higher EE.
文摘In this paper, we investigate a two-way relay network consisting of two sources, multiple cooperative relays and an eavesdropper. To enhance secure communications, a new relay chatting based on transmission scheme is proposed. Specifically, the proposed scheme selects a best relay that maximize the sum mutual information among the sources to forward the sources’ signals using an amplify-and-forward protocol, and the remaining relays transmit interference signals to confuse the eavesdropper via distributed beam forming. It can be found that the proposed scheme with relay chatting does not require the knowledge of the eavesdropper’s channel, and outperforms the joint relay and jammer selection scheme, which introduces the interference into the sources. Numerical results show that the secrecy outage probability of the proposed scheme converges to zero as the transmit power increases.
基金The authors would like to thank the reviewers for their de-tailed reviews and constructive comments, which have helped improve the quality of this paper. This work was supported by the National Natural Science Foundation of China under Grant No. 61101107 the Scientific Research and Innovation Plan for the Youth of BUPT under Grant No. 2011RC0305 the National International Science and Technology Cooperation Project under Grant No. 2010DFA11320.
文摘In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from the destination indicates failure of the direct transmission. The proposed scheme selects the optimal relay and its corresponding transmission power in each time slot based on channel condition and residual ener- gy with the objective of minimizing energy con- sumption and extending network lifetime. In the study, the f'mite-state Markov channel model is used to characterize the correlation structure of channel fading in wireless networks, and the pro- cedure of relay selection and transmission power decision is formulated as a M arkov decision process. Numerical and simulation results show that the proposed scheme consumes less energy and prolongs the network lifetime.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61701201,U1805262,61871446 and 62071247the Natural Science Foundation of Jiangsu Province(No.BK20170758),Six talent peaks project in Jiangsu Province.
文摘Non-orthogonal multiple access(NOMA)is considered as one of the key technologies for the fifth generation(5G)wireless communications.The integration of NOMA and device-to-device(D2D)communications has recently attracted wide attention.In this paper,a relaying D2D communications assisted with cooperative relaying systems using NOMA(DRC-NOMA)is considered.We analyze the ergodic sum-rate for the proposed system and then derive the closed-form expressions.In addition,an optimal power allocation strategy maximizing the ergodic sum-rate is proposed based on these analysis results.Numerical results show the good agreement between the results of analysis and Monte Carlo method.The proposed DRC-NOMA has a great improvement of the ergodic sum-rate in the small regime of average channel gain of D2D pair.
基金the National Natural Science Foundation of China(61573285)。
文摘The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-deterministic polynomial hard(NP-hard)multi-objective optimization problem,instead of generating a Pareto solution,this work focuses on considering both objectives at the same level so as to achieve a balanced solution between them.Based on the property that agents connected to the same UAV are a cluster,two clustering-based algorithms,M-K-means(MKM)and modified fast search and find density of peaks(MFSFDP)methods,are first proposed.Since the former algorithm requires too much computational time and the latter one requires too many relays,an algorithm for the balanced network performance and relay number(BPN)is proposed by discretizing the area to avoid missing the optimal relay positions and defining a new local density function to reflect the network performance metric.Simulation results demonstrate that the proposed algorithms are feasible and effective.Comparisons between these algorithms show that the BPN algorithm uses fewer relay UAVs than the MFSFDP and classic set-covering based algorithm,and its computational time is far less than the MKM algorithm.
基金supported by the Natural Science Foundation of China under Grant No.62001517.
文摘In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy outage probability is obtained.Moreover,to get more information on the secrecy outage probability in a high signalto-noise regime,the asymptotic analysis along with the secrecy diversity order and secrecy coding gain for the secrecy outage probability are also further obtained,which presents a fast method to evaluate the impact of system parameters and hardware impairments on the considered network.Finally,Monte Carlo simulation results are provided to show the efficiency of the theoretical analysis.
文摘Free space optical(FSO)communication has recently aroused great interest in academia due to its unique features,such as large transmission band,high data rates,and strong anti-electromagnetic interference.With the aim of evaluating the performance of an FSO communication system and extending the line-of-sight transmission distance,we propose an unmanned aerial vehicle(UAV)-assisted dual-hop FSO communication system equipped with amplifyand-forward protocol at the relay node.Specifically,we consider impairments of atmospheric absorption,pointing errors,atmospheric turbulence,and link interruptions due to angle-of-arrival fluctuations in the relay system.The Gamma-Gamma and Malaga distributions are used to model the influence of atmospheric turbulence on the source-to-UAV and UAVto-destination links,respectively.We derive closedform expressions of the probability density function(PDF)and cumulative distribution function(CDF)for the proposed communication system,in terms of the Meijer-G function.Based on the precise PDF and CDF,analytical expressions for the outage probability,average bit error rate,and ergodic capacity are proposed with the aid of the extended generalized bivariate Fox’s H function.Finally,we show that there is a match between the analytical results and numerical results,and we analyze the influence of the system and channel parameters on the performance.
基金supported by the National High Technology Research and Development Program of P.R.China under Grant No.2012 AA121604 the National Natural Science Foundation of China under Grants No.60902042,No.61170014,No.61202079+1 种基金 the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.20090006110014 the Foundation for Key Program of Ministry of Education of China under Grant No.311007
文摘The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) satellite network relays. According to the geographical distribution of the forthcoming Chinese Deep Space Measuring and Controlling Network (DSMCN), two networking schemes are proposed and two elevation angle optimization models are established for locating GEO relay satellites. To analyze the dynamic connectivity, a dynamic network model is constructed with respect to the time-varying characteristics of cislunar trunk links. The advantages of the two proposed schemes, in terms of the Connectivity Rate (CR), Interruption Frequency (IF), and Average Length of Connecting Duration (ALCD), are corroborated by several simulations. In the case of the lunar polar orbit constellation case, the gains in the performance of scheme I are observed to be 134.55%, 117.03%, and 217.47% compared with DSMCN for three evaluation indicators, and the gains in the performance of scheme II are observed to be 238. 22%, 240.40%, and 572.71%. The results validate that the connectivity of GEO satellites outperforms that of earth facilities significantly and schemes based on GEO satellite relays are promising options for cislunar multi-hop communication networking.
基金National Natural Science Foundation of China(No.61871241)Nantong Science and Technology Project(JC2019114,JC2021129).
文摘This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration of the UAV and the information-causality constraints into consideration,the energy-efficiency of the system under investigation is maximized by jointly optimizing the UAV’s trajectory and the individual transmit power levels of the source and the UAV relay nodes.The optimization problem is non-convex and thus cannot be solved directly.Therefore,it is decoupled into two subproblems.One sub-problem is for the transmit power control at the source and the UAV relay nodes,and the other aims at optimizing the UAV s flight trajectory.By using the Lagrangian dual and Dinkelbach methods,the two sub-problems are solved,leading to an iterative algorithm for the joint design of transmit power control and trajectory optimization.Computer simulations demonstrated that by conducting the proposed algorithm,the flight trajectory of the UAV and the individual transmit power levels of the nodes can be flexibly adjusted according to the system conditions,and the proposed algorithm can achieve signiflcantly higher energy efficiency as compared with the other benchmark schemes.
基金Supported by the National Natural Science Foundation of China under Grant No 61378011the Program for Science and Technology Innovation Research Team in University of Henan Province under Grant No 13IRTSTHN020
文摘Measurement-device-independent quantum key distribution (MDI-QKD) is proven to be immune to all the de- tector side channel attacks. With two symmetric quantum channels, the maximal transmission distance can be doubled when compared with the prepare-and-measure QKD. An interesting question is whether the transmission distance can be extended further. In this work, we consider the contributions of the two-way local operations and classical communications to the key generation rate and transmission distance of the MDI-QKD. Our numerical results show that the secure transmission distances are increased by about 12kin and 8 km when the 1 13 and the 2 B steps are implemented, respectively.