Integrating Chinese culture into college English can not only enhance students’humanities literacy and cultivate their cultural confidence,but also facilitate the inheritance and international dissemination of Chines...Integrating Chinese culture into college English can not only enhance students’humanities literacy and cultivate their cultural confidence,but also facilitate the inheritance and international dissemination of Chinese culture.Taking Tyler’s curriculum framework as the starting point,this paper analyzes some factors that affect the integration of Chinese culture into the college English teaching and proposes some strategies for the integration of Chinese culture into college English teaching by innovating teaching objectives,enriching teaching contents,transforming modes of course delivery,and reconstructing the assessment system.展开更多
A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm de...A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.展开更多
In this paper we examine single-step iterative methods for the solution of the nonlinear algebraic equation f (x) = x2 - N = 0 , for some integer N, generating rational approximations p/q that are optimal in the sense...In this paper we examine single-step iterative methods for the solution of the nonlinear algebraic equation f (x) = x2 - N = 0 , for some integer N, generating rational approximations p/q that are optimal in the sense of Pell’s equation p2 - Nq2 = k for some integer k, converging either alternatingly or oppositely.展开更多
The design of this paper is to present the first installment of a complete and final theory of rational human intelligence. The theory is mathematical in the strictest possible sense. The mathematics involved is stric...The design of this paper is to present the first installment of a complete and final theory of rational human intelligence. The theory is mathematical in the strictest possible sense. The mathematics involved is strictly digital—not quantitative in the manner that what is usually thought of as mathematics is quantitative. It is anticipated at this time that the exclusively digital nature of rational human intelligence exhibits four flavors of digitality, apparently no more, and that each flavor will require a lengthy study in its own right. (For more information,please refer to the PDF.)展开更多
The paper resolves the great debate of the 20th century between the three philosophies of mathematics-logicism, intuitionism and formalism—founded by Bertrand Russell and A. N. Whitehead, L. E. J. Brouwer and David H...The paper resolves the great debate of the 20th century between the three philosophies of mathematics-logicism, intuitionism and formalism—founded by Bertrand Russell and A. N. Whitehead, L. E. J. Brouwer and David Hilbert, respectively. The issue: which one provides firm foundations for mathematics? None of them won the debate. We make a critique of each, consolidate their contributions, rectify their weakness and add our own to resolve the debate. The resolution forms the new foundations of mathematics. Then we apply the new foundations to assess the status of Hilbert’s 23 problems most of which in foundations and find out which ones have been solved, which ones have flawed solutions that we rectify and which ones are open problems. Problem 6 of Hilbert’s problems—Can physics be axiomatized?—is answered yes in E. E. Escultura, Nonlinear Analysis, A-Series: 69(2008), which provides the solution, namely, the grand unified theory (GUT). We also point to the resolution of the 379-year-old Fermat’s conjecture (popularly known as Fermat’s last theorem) in E. E. Escultura, Exact Solutions of Fermat’s Equations (Definitive Resolution of Fermat’s Last Theorem), Nonlinear Studies, 5(2), (1998). Likewise, the proof of the 274-year-old Goldbach’s conjecture is in E. E. Escultura, The New Mathematics and Physics, Applied Mathematics and Computation, 138(1), 2003.展开更多
The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approach...The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approaches are not necessarily mutually exclusive. The design of the present paper is to add one more approach by analyzing the mathematical structure of the Monty Hall problem in digital terms. The structure of the problem is described as much as possible in the tradition and the spirit—and as much as possible by means of the algebraic conventions—of George Boole’s Investigation of the Laws of Thought (1854), the Magna Charta of the digital age, and of John Venn’s Symbolic Logic (second edition, 1894), which is squarely based on Boole’s Investigation and elucidates it in many ways. The focus is not only on the digital-mathematical structure itself but also on its relation to the presumed digital nature of cognition as expressed in rational thought and language. The digital approach is outlined in part 1. In part 2, the Monty Hall problem is analyzed digitally. To ensure the generality of the digital approach and demonstrate its reliability and productivity, the Monty Hall problem is extended and generalized in parts 3 and 4 to related cases in light of the axioms of probability theory. In the full mapping of the mathematical structure of the Monty Hall problem and any extensions thereof, a digital or non-quantitative skeleton is fleshed out by a quantitative component. The pertinent mathematical equations are developed and presented and illustrated by means of examples.展开更多
In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped i...In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped in detail. It is styled here as Monty Hall 1.0. The proposed analysis was then generalized to related cases involving any number of doors (d), cars (c), and opened doors (o) (Monty Hall 2.0) and 1 specific case involving more than 1 picked door (p) (Monty Hall 3.0). In cognitive terms, this analysis was interpreted in function of the presumed digital nature of rational thought and language. In the present paper, Monty Hall 1.0 and 2.0 are briefly reviewed (§§2-3). Additional generalizations of the problem are then presented in §§4-7. They concern expansions of the problem to the following items: (1) to any number of picked doors, with p denoting the number of doors initially picked and q the number of doors picked when switching doors after doors have been opened to reveal goats (Monty Hall 3.0;see §4);(3) to the precise conditions under which one’s chances increase or decrease in instances of Monty Hall 3.0 (Monty Hall 3.2;see §6);and (4) to any number of switches of doors (s) (Monty Hall 4.0;see §7). The afore-mentioned article in APM, Vol. 1, No. 4 may serve as a useful introduction to the analysis of the higher variations of the Monty Hall problem offered in the present article. The body of the article is by Leo Depuydt. An appendix by Richard D. Gill (see §8) provides additional context by building a bridge to modern probability theory in its conventional notation and by pointing to the benefits of certain interesting and relevant tools of computation now available on the Internet. The cognitive component of the earlier investigation is extended in §9 by reflections on the foundations of mathematics. It will be proposed, in the footsteps of George Boole, that the phenomenon of mathematics needs to be defined in empirical terms as something that happens to the brain or something that the brain does. It is generally assumed that mathematics is a property of nature or reality or whatever one may call it. There is not the slightest intention in this paper to falsify this assumption because it cannot be falsified, just as it cannot be empirically or positively proven. But there is no way that this assumption can be a factual observation. It can be no more than an altogether reasonable, yet fully secondary, inference derived mainly from the fact that mathematics appears to work, even if some may deem the fact of this match to constitute proof. On the deepest empirical level, mathematics can only be directly observed and therefore directly analyzed as an activity of the brain. The study of mathematics therefore becomes an essential part of the study of cognition and human intelligence. The reflections on mathematics as a phenomenon offered in the present article will serve as a prelude to planned articles on how to redefine the foundations of probability as one type of mathematics in cognitive fashion and on how exactly Boole’s theory of probability subsumes, supersedes, and completes classical probability theory. §§2-7 combined, on the one hand, and §9, on the other hand, are both self-sufficient units and can be read independently from one another. The ultimate design of the larger project of which this paper is part remains the increase of digitalization of the analysis of rational thought and language, that is, of (rational, not emotional) human intelligence. To reach out to other disciplines, an effort is made to describe the mathematics more explicitly than is usual.展开更多
This article presents four (4) additions to a book on the brain’s OS published by SciRP in 2015 [1]. It is a kind of appendix to the book. Some familiarity with the earlier book is presupposed. The book itself propos...This article presents four (4) additions to a book on the brain’s OS published by SciRP in 2015 [1]. It is a kind of appendix to the book. Some familiarity with the earlier book is presupposed. The book itself proposes a complete physical and mathematical blueprint of the brain’s OS. A first addition to the book (see Chapters 5 to 10 below) concerns the relation between the afore-mentioned blueprint and the more than 2000-year-old so-called fundamental laws of thought of logic and philosophy, which came to be viewed as being three (3) in number, namely the laws of 1) Identity, 2) Contradiction, and 3) the Excluded Middle. The blueprint and the laws cannot both be the final foundation of the brain’s OS. The design of the present paper is to interpret the laws in strictly mathematical terms in light of the blueprint. This addition constitutes the bulk of the present article. Chapters 5 to 8 set the stage. Chapters 9 and 10 present a detailed mathematical analysis of the laws. A second addition to the book (Chapter 11) concerns the distinction between the laws and the axioms of the brain’s OS. Laws are part of physics. Axioms are part of mathematics. Since the theory of the brain’s OS involves both physics and mathematics, it exhibits both laws and axioms. A third addition (Chapter 12) to the book involves an additional flavor of digitality in the brain’s OS. In the book, there are five (5). But brain chemistry requires a sixth. It will be called Existence Digitality. A fourth addition (Chapter 13) concerns reflections on the role of imagination in theories of physics in light of the ignorance of deeper causes. Chapters 1 to 4 present preliminary matter, for the most part a brief survey of general concepts derived from what is in the book [1]. Some historical notes are gathered at the end in Chapter 14.展开更多
基金supported by Program of curriculum ideological and political education teaching reform,Zhoukou Normal University-Research on the Path of Ideological and Political Construction of College English Course in local universities from the perspective of cultural confidence(Fund No.SZJG-2022004)Program of Educational Curriculum Reform Henan Province-The exploration of the cultivation of the mentors in normal universities under the background of teacher professional certification(Fund No.2022-JSJYZD-028)+1 种基金the research and practice program of teaching and learning in Zhoukou Normal University(Fund No.JF2021016)achievements of the training program for young and middle-aged key teachers at Zhoukou Normal University in 2021.
文摘Integrating Chinese culture into college English can not only enhance students’humanities literacy and cultivate their cultural confidence,but also facilitate the inheritance and international dissemination of Chinese culture.Taking Tyler’s curriculum framework as the starting point,this paper analyzes some factors that affect the integration of Chinese culture into the college English teaching and proposes some strategies for the integration of Chinese culture into college English teaching by innovating teaching objectives,enriching teaching contents,transforming modes of course delivery,and reconstructing the assessment system.
文摘A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.
文摘In this paper we examine single-step iterative methods for the solution of the nonlinear algebraic equation f (x) = x2 - N = 0 , for some integer N, generating rational approximations p/q that are optimal in the sense of Pell’s equation p2 - Nq2 = k for some integer k, converging either alternatingly or oppositely.
文摘The design of this paper is to present the first installment of a complete and final theory of rational human intelligence. The theory is mathematical in the strictest possible sense. The mathematics involved is strictly digital—not quantitative in the manner that what is usually thought of as mathematics is quantitative. It is anticipated at this time that the exclusively digital nature of rational human intelligence exhibits four flavors of digitality, apparently no more, and that each flavor will require a lengthy study in its own right. (For more information,please refer to the PDF.)
文摘The paper resolves the great debate of the 20th century between the three philosophies of mathematics-logicism, intuitionism and formalism—founded by Bertrand Russell and A. N. Whitehead, L. E. J. Brouwer and David Hilbert, respectively. The issue: which one provides firm foundations for mathematics? None of them won the debate. We make a critique of each, consolidate their contributions, rectify their weakness and add our own to resolve the debate. The resolution forms the new foundations of mathematics. Then we apply the new foundations to assess the status of Hilbert’s 23 problems most of which in foundations and find out which ones have been solved, which ones have flawed solutions that we rectify and which ones are open problems. Problem 6 of Hilbert’s problems—Can physics be axiomatized?—is answered yes in E. E. Escultura, Nonlinear Analysis, A-Series: 69(2008), which provides the solution, namely, the grand unified theory (GUT). We also point to the resolution of the 379-year-old Fermat’s conjecture (popularly known as Fermat’s last theorem) in E. E. Escultura, Exact Solutions of Fermat’s Equations (Definitive Resolution of Fermat’s Last Theorem), Nonlinear Studies, 5(2), (1998). Likewise, the proof of the 274-year-old Goldbach’s conjecture is in E. E. Escultura, The New Mathematics and Physics, Applied Mathematics and Computation, 138(1), 2003.
文摘The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approaches are not necessarily mutually exclusive. The design of the present paper is to add one more approach by analyzing the mathematical structure of the Monty Hall problem in digital terms. The structure of the problem is described as much as possible in the tradition and the spirit—and as much as possible by means of the algebraic conventions—of George Boole’s Investigation of the Laws of Thought (1854), the Magna Charta of the digital age, and of John Venn’s Symbolic Logic (second edition, 1894), which is squarely based on Boole’s Investigation and elucidates it in many ways. The focus is not only on the digital-mathematical structure itself but also on its relation to the presumed digital nature of cognition as expressed in rational thought and language. The digital approach is outlined in part 1. In part 2, the Monty Hall problem is analyzed digitally. To ensure the generality of the digital approach and demonstrate its reliability and productivity, the Monty Hall problem is extended and generalized in parts 3 and 4 to related cases in light of the axioms of probability theory. In the full mapping of the mathematical structure of the Monty Hall problem and any extensions thereof, a digital or non-quantitative skeleton is fleshed out by a quantitative component. The pertinent mathematical equations are developed and presented and illustrated by means of examples.
文摘In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped in detail. It is styled here as Monty Hall 1.0. The proposed analysis was then generalized to related cases involving any number of doors (d), cars (c), and opened doors (o) (Monty Hall 2.0) and 1 specific case involving more than 1 picked door (p) (Monty Hall 3.0). In cognitive terms, this analysis was interpreted in function of the presumed digital nature of rational thought and language. In the present paper, Monty Hall 1.0 and 2.0 are briefly reviewed (§§2-3). Additional generalizations of the problem are then presented in §§4-7. They concern expansions of the problem to the following items: (1) to any number of picked doors, with p denoting the number of doors initially picked and q the number of doors picked when switching doors after doors have been opened to reveal goats (Monty Hall 3.0;see §4);(3) to the precise conditions under which one’s chances increase or decrease in instances of Monty Hall 3.0 (Monty Hall 3.2;see §6);and (4) to any number of switches of doors (s) (Monty Hall 4.0;see §7). The afore-mentioned article in APM, Vol. 1, No. 4 may serve as a useful introduction to the analysis of the higher variations of the Monty Hall problem offered in the present article. The body of the article is by Leo Depuydt. An appendix by Richard D. Gill (see §8) provides additional context by building a bridge to modern probability theory in its conventional notation and by pointing to the benefits of certain interesting and relevant tools of computation now available on the Internet. The cognitive component of the earlier investigation is extended in §9 by reflections on the foundations of mathematics. It will be proposed, in the footsteps of George Boole, that the phenomenon of mathematics needs to be defined in empirical terms as something that happens to the brain or something that the brain does. It is generally assumed that mathematics is a property of nature or reality or whatever one may call it. There is not the slightest intention in this paper to falsify this assumption because it cannot be falsified, just as it cannot be empirically or positively proven. But there is no way that this assumption can be a factual observation. It can be no more than an altogether reasonable, yet fully secondary, inference derived mainly from the fact that mathematics appears to work, even if some may deem the fact of this match to constitute proof. On the deepest empirical level, mathematics can only be directly observed and therefore directly analyzed as an activity of the brain. The study of mathematics therefore becomes an essential part of the study of cognition and human intelligence. The reflections on mathematics as a phenomenon offered in the present article will serve as a prelude to planned articles on how to redefine the foundations of probability as one type of mathematics in cognitive fashion and on how exactly Boole’s theory of probability subsumes, supersedes, and completes classical probability theory. §§2-7 combined, on the one hand, and §9, on the other hand, are both self-sufficient units and can be read independently from one another. The ultimate design of the larger project of which this paper is part remains the increase of digitalization of the analysis of rational thought and language, that is, of (rational, not emotional) human intelligence. To reach out to other disciplines, an effort is made to describe the mathematics more explicitly than is usual.
文摘This article presents four (4) additions to a book on the brain’s OS published by SciRP in 2015 [1]. It is a kind of appendix to the book. Some familiarity with the earlier book is presupposed. The book itself proposes a complete physical and mathematical blueprint of the brain’s OS. A first addition to the book (see Chapters 5 to 10 below) concerns the relation between the afore-mentioned blueprint and the more than 2000-year-old so-called fundamental laws of thought of logic and philosophy, which came to be viewed as being three (3) in number, namely the laws of 1) Identity, 2) Contradiction, and 3) the Excluded Middle. The blueprint and the laws cannot both be the final foundation of the brain’s OS. The design of the present paper is to interpret the laws in strictly mathematical terms in light of the blueprint. This addition constitutes the bulk of the present article. Chapters 5 to 8 set the stage. Chapters 9 and 10 present a detailed mathematical analysis of the laws. A second addition to the book (Chapter 11) concerns the distinction between the laws and the axioms of the brain’s OS. Laws are part of physics. Axioms are part of mathematics. Since the theory of the brain’s OS involves both physics and mathematics, it exhibits both laws and axioms. A third addition (Chapter 12) to the book involves an additional flavor of digitality in the brain’s OS. In the book, there are five (5). But brain chemistry requires a sixth. It will be called Existence Digitality. A fourth addition (Chapter 13) concerns reflections on the role of imagination in theories of physics in light of the ignorance of deeper causes. Chapters 1 to 4 present preliminary matter, for the most part a brief survey of general concepts derived from what is in the book [1]. Some historical notes are gathered at the end in Chapter 14.