In this study, Va 1686 gene was cloned from Vibrio alginolyticus . The total length of the gene is 1 164 bp, and it could encode 387 amino acids. The physicochemical properties, protein structure, genetic evolutionary...In this study, Va 1686 gene was cloned from Vibrio alginolyticus . The total length of the gene is 1 164 bp, and it could encode 387 amino acids. The physicochemical properties, protein structure, genetic evolutionary relationship and antigenic characteristics of the effect protein Va1686 of V. alginolyticus HY9901 type Ⅲ secretion system were studied and analyzed by bioinformatics methods and tools. The results showed that Va1686 is a stable hydrophilic and acidic protein without a transmembrane region and a signal peptide, and secondary structure to α-helix. The evolutionary analysis showed that V. alginolyticus HY9901 and V. harveyi were clustered together, which indicated that the genetic relationship between the two species was the closest. Va1686 contains a Fic superfamily conserved domain associated with cell division. Bioinformatics analysis showed that the B-cell preponderant epitopes of Va1686 might be localized in the regions of 48-49, 82-85, 125-126, 150-153, 185-186, 236-237 and so on. The 3D structure model of Va1686 subunit was simulated by SWISS-MODEL software and it was found that the vopS of V. parahaemolyticus was similar and the similarity was 89.46%. In this study, the feasibility of Va1686 as a common antigen of Vibrio was verified from the perspective of bioinformatics, which laid the foundation for the next step in vaccine development.展开更多
In this study,Hy322 gene was cloned from Vibrio alginolyticus.The total length of its gene was 969 bp,and it could encode 322 amino acids.The physicochemical properties,protein structure,genetic evolutionary relations...In this study,Hy322 gene was cloned from Vibrio alginolyticus.The total length of its gene was 969 bp,and it could encode 322 amino acids.The physicochemical properties,protein structure,genetic evolutionary relationship and antigenic characteristics of the effector protein Hy322 of V.alginolyticus HY9901 type Ⅲ secretion system were studied and analyzed by bioinformatics methods and tools.The results showed that Hy322 is an unstable hydrophilic and acidic protein without a transmembrane region and a signal peptide,and secondary structure to α-helix.The evolutionary analysis showed that V.alginolyticus HY9901 and V.harveyi were clustered together,which indicated that the genetic relationship between the two species was closest.HY322 contains a FliN super family conserved domain associated with Flagellar motor switch.Bioinformatics analysis showed that the B-cell preponderant epitopes of Hy322 might be localized in the regions of 32-33,100-102,138-140,215-216,235-238 and 246-249.The 3D structure model of Hy322 subunit was simulated by SWISS-MODEL software and itwas found that the yscQ of Yersinia were similar and the similarity was 42.25%.In this study,the feasibility of Hy322 as a common antigen of Vibrio was verified from the perspective of bioinformatics,which laid the foundation for the next step in vaccine development.展开更多
Many studies have shown that fibronectin type III domain-containing protein 5(FDNC5) and brain-derived neurotrophic factor(BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an ...Many studies have shown that fibronectin type III domain-containing protein 5(FDNC5) and brain-derived neurotrophic factor(BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an environment that provides animals with multi-sensory stimulation and movement opportunities. An enriched environment has been shown to promote the regeneration of nerve cells, synapses, and blood vessels in the animal brain after cerebral ischemia;however, the exact mechanisms have not been clarified. This study aimed to determine whether an enriched environment could improve neurobehavioral functions after the experimental inducement of cerebral ischemia and whether neurobehavioral outcomes were associated with the expression of FDNC5 and BDNF. This study established ischemic mouse models using permanent middle cerebral artery occlusion(pMCAO) on the left side. On postoperative day 1, the mice were randomly assigned to either enriched environment or standard housing condition groups. Mice in the standard housing condition group were housed and fed under standard conditions. Mice in the enriched environment group were housed in a large cage, containing various toys, and fed with a standard diet. Sham-operated mice received the same procedure, but without artery occlusion, and were housed and fed under standard conditions. On postoperative days 7 and 14, a beam-walking test was used to assess coordination, balance, and spatial learning. On postoperative days 16–20, a Morris water maze test was used to assess spatial learning and memory. On postoperative day 15, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex were analyzed by western blot assay. The results showed that compared with the standard housing condition group, the motor balance and coordination functions(based on beam-walking test scores 7 and 14 days after operation), spatial learning abilities(based on the spatial learning scores from the Morris water maze test 16–19 days after operation), and memory abilities(based on the memory scores of the Morris water maze test 20 days after operation) of the enriched environment group improved significantly. In addition, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex increased in the enriched environment group compared with those in the standard housing condition group. Furthermore, the Pearson correlation coefficient showed that neurobehavioral functions were positively associated with the expression levels of FDNC5 and BDNF(r = 0.587 and r = 0.840, respectively). These findings suggest that an enriched environment upregulates FDNC5 protein expression in the ipsilateral cerebral cortex after cerebral ischemia, which then activates BDNF protein expression, improving neurological function. BDNF protein expression was positively correlated with improved neurological function. The experimental protocols were approved by the Institutional Animal Care and Use Committee of Fudan University, China(approval Nos. 20160858 A232, 20160860 A234) on February 24, 2016.展开更多
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of pro...The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type Ⅲ secretion system(T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp.(Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gramnegative bacteria that share in common a 70 kb virulence plasmid which encodes the T3 SS. Translocation of the Yersinia effector proteins(YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.展开更多
目的对病原菌Ⅲ型分泌系统(TTSS)效应蛋白在非致病菌中进行直系同源基因预测,以获得病原菌Ⅲ型分泌系统特有效应蛋白,并进一步对特有效应蛋白模体构成进行分析,旨在更深入地认识TTSS效应蛋白,为理论研究和生物学实验提供参考。方法利用...目的对病原菌Ⅲ型分泌系统(TTSS)效应蛋白在非致病菌中进行直系同源基因预测,以获得病原菌Ⅲ型分泌系统特有效应蛋白,并进一步对特有效应蛋白模体构成进行分析,旨在更深入地认识TTSS效应蛋白,为理论研究和生物学实验提供参考。方法利用彼此最佳blast方法对效应蛋白在构建的非致病性细菌蛋白质数据库中进行直系同源基因预测,并利用Inter Pro Scan对预测获得的特有效应蛋白序列进行模体搜索分析。结果在49个收集整理的致病菌Ⅲ型分泌系统效应蛋白序列中,有18个效应蛋白在非致病菌中存在直系同源基因,31个效应蛋白(即TTSS特有效应蛋白)在非致病菌中没有直系同源基因;对31个Ⅲ型分泌系统特有效应蛋白序列进行模体分析,获得了12个效应蛋白特有模体。结论 31个致病菌Ⅲ型分泌系统特有效应蛋白序列的获得,为更精确地在致病性细菌基因组内预测获得新的效应蛋白序列奠定了基础;12个效应蛋白特有模体的获得及其基因本体注释分析进一步理解了效应蛋白的作用机制。展开更多
Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type Ⅲ domain-containing protein 5(FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective f...Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type Ⅲ domain-containing protein 5(FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.展开更多
Ralstonia solanacearum is a widespread plant bacterial pathogen that can launch a range of type Ⅲ effectors(T3Es)to cause disease.In this study,we isolate a pathogenic R.solanacearum strain named P380 from tomato rhi...Ralstonia solanacearum is a widespread plant bacterial pathogen that can launch a range of type Ⅲ effectors(T3Es)to cause disease.In this study,we isolate a pathogenic R.solanacearum strain named P380 from tomato rhizosphere.Five out of 12 core T3Es of strain P380 are introduced into Pseudomonas syringae DC3000D36E separately to determine their functions in interacting with plants.DC3000D36E that harbors each effector suppresses FliC-triggered Pti5 and ACRE31 expression,ROS burst,and callose deposition.RipAE,RipU,and RipW elicit cell death as well as upregulate the MAPK cascades in Nicotiana benthamiana.The derivatives RipC1^(△DDXDX(T/V))and RipW^(△DDKXXQ)but not RipAE^(K310R) fail to suppress ROS burst.Moreover,RipAE^(K310R) and RipW^(△DDKXXQ) retain the cell death elicitation ability.RipAE and RipW are associated with salicylic acid and jasmonic acid pathways,respectively.RipAE and RipAQ significantly promote the propagation of DC3000D36E in plants.The five core T3Es localize in diverse subcellular organelles of nucleus,plasma membrane,endoplasmic reticulum,and Golgi network.The suppressor of G2 allele of Skp1 is required for RipAE but not RipU-triggered cell death in N.benthamiana.These results indicate that the core T3Es in R.solanacearum play diverse roles in plantpathogen interactions.展开更多
基金Supported by Shenzhen Science and Technology Project(JCYJ20170818111629778,JCYJ20170306161613251)National Natural Science Foundation of Guangdong Province(2017A030313174)+2 种基金Natural Science Foundation of Guangdong Ocean University(C17379)Undergraduate Innovative and Entrepreneurial Team Project(CCTD201802)Science and Technology Program of Guangdong Province(2015A020209163)
文摘In this study, Va 1686 gene was cloned from Vibrio alginolyticus . The total length of the gene is 1 164 bp, and it could encode 387 amino acids. The physicochemical properties, protein structure, genetic evolutionary relationship and antigenic characteristics of the effect protein Va1686 of V. alginolyticus HY9901 type Ⅲ secretion system were studied and analyzed by bioinformatics methods and tools. The results showed that Va1686 is a stable hydrophilic and acidic protein without a transmembrane region and a signal peptide, and secondary structure to α-helix. The evolutionary analysis showed that V. alginolyticus HY9901 and V. harveyi were clustered together, which indicated that the genetic relationship between the two species was the closest. Va1686 contains a Fic superfamily conserved domain associated with cell division. Bioinformatics analysis showed that the B-cell preponderant epitopes of Va1686 might be localized in the regions of 48-49, 82-85, 125-126, 150-153, 185-186, 236-237 and so on. The 3D structure model of Va1686 subunit was simulated by SWISS-MODEL software and it was found that the vopS of V. parahaemolyticus was similar and the similarity was 89.46%. In this study, the feasibility of Va1686 as a common antigen of Vibrio was verified from the perspective of bioinformatics, which laid the foundation for the next step in vaccine development.
基金Supported by Shenzhen Science and Technology Project(JCYJ20170818111629778,JCYJ20170306161613251)National Natural Science Foundation of Guangdong Province(2017A030313174)+1 种基金Natural Science Foundation of Guangdong Ocean University(C17379)Undergraduate Innovative and Entrepreneurial Team Project(CCTD201802)
文摘In this study,Hy322 gene was cloned from Vibrio alginolyticus.The total length of its gene was 969 bp,and it could encode 322 amino acids.The physicochemical properties,protein structure,genetic evolutionary relationship and antigenic characteristics of the effector protein Hy322 of V.alginolyticus HY9901 type Ⅲ secretion system were studied and analyzed by bioinformatics methods and tools.The results showed that Hy322 is an unstable hydrophilic and acidic protein without a transmembrane region and a signal peptide,and secondary structure to α-helix.The evolutionary analysis showed that V.alginolyticus HY9901 and V.harveyi were clustered together,which indicated that the genetic relationship between the two species was closest.HY322 contains a FliN super family conserved domain associated with Flagellar motor switch.Bioinformatics analysis showed that the B-cell preponderant epitopes of Hy322 might be localized in the regions of 32-33,100-102,138-140,215-216,235-238 and 246-249.The 3D structure model of Hy322 subunit was simulated by SWISS-MODEL software and itwas found that the yscQ of Yersinia were similar and the similarity was 42.25%.In this study,the feasibility of Hy322 as a common antigen of Vibrio was verified from the perspective of bioinformatics,which laid the foundation for the next step in vaccine development.
基金supported by the National Natural Science Foundation of China,Nos.81601961(to KWY),81672242(to YW)the Key Construction Projects of Shanghai Health and Family Planning on Weak Discipline,China,No.2015ZB0401(to YW)
文摘Many studies have shown that fibronectin type III domain-containing protein 5(FDNC5) and brain-derived neurotrophic factor(BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an environment that provides animals with multi-sensory stimulation and movement opportunities. An enriched environment has been shown to promote the regeneration of nerve cells, synapses, and blood vessels in the animal brain after cerebral ischemia;however, the exact mechanisms have not been clarified. This study aimed to determine whether an enriched environment could improve neurobehavioral functions after the experimental inducement of cerebral ischemia and whether neurobehavioral outcomes were associated with the expression of FDNC5 and BDNF. This study established ischemic mouse models using permanent middle cerebral artery occlusion(pMCAO) on the left side. On postoperative day 1, the mice were randomly assigned to either enriched environment or standard housing condition groups. Mice in the standard housing condition group were housed and fed under standard conditions. Mice in the enriched environment group were housed in a large cage, containing various toys, and fed with a standard diet. Sham-operated mice received the same procedure, but without artery occlusion, and were housed and fed under standard conditions. On postoperative days 7 and 14, a beam-walking test was used to assess coordination, balance, and spatial learning. On postoperative days 16–20, a Morris water maze test was used to assess spatial learning and memory. On postoperative day 15, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex were analyzed by western blot assay. The results showed that compared with the standard housing condition group, the motor balance and coordination functions(based on beam-walking test scores 7 and 14 days after operation), spatial learning abilities(based on the spatial learning scores from the Morris water maze test 16–19 days after operation), and memory abilities(based on the memory scores of the Morris water maze test 20 days after operation) of the enriched environment group improved significantly. In addition, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex increased in the enriched environment group compared with those in the standard housing condition group. Furthermore, the Pearson correlation coefficient showed that neurobehavioral functions were positively associated with the expression levels of FDNC5 and BDNF(r = 0.587 and r = 0.840, respectively). These findings suggest that an enriched environment upregulates FDNC5 protein expression in the ipsilateral cerebral cortex after cerebral ischemia, which then activates BDNF protein expression, improving neurological function. BDNF protein expression was positively correlated with improved neurological function. The experimental protocols were approved by the Institutional Animal Care and Use Committee of Fudan University, China(approval Nos. 20160858 A232, 20160860 A234) on February 24, 2016.
基金Supported by the ASM Robert D Watkins Graduate FellowshipUC Davis Hellman Fellowship
文摘The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type Ⅲ secretion system(T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp.(Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gramnegative bacteria that share in common a 70 kb virulence plasmid which encodes the T3 SS. Translocation of the Yersinia effector proteins(YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.
文摘目的对病原菌Ⅲ型分泌系统(TTSS)效应蛋白在非致病菌中进行直系同源基因预测,以获得病原菌Ⅲ型分泌系统特有效应蛋白,并进一步对特有效应蛋白模体构成进行分析,旨在更深入地认识TTSS效应蛋白,为理论研究和生物学实验提供参考。方法利用彼此最佳blast方法对效应蛋白在构建的非致病性细菌蛋白质数据库中进行直系同源基因预测,并利用Inter Pro Scan对预测获得的特有效应蛋白序列进行模体搜索分析。结果在49个收集整理的致病菌Ⅲ型分泌系统效应蛋白序列中,有18个效应蛋白在非致病菌中存在直系同源基因,31个效应蛋白(即TTSS特有效应蛋白)在非致病菌中没有直系同源基因;对31个Ⅲ型分泌系统特有效应蛋白序列进行模体分析,获得了12个效应蛋白特有模体。结论 31个致病菌Ⅲ型分泌系统特有效应蛋白序列的获得,为更精确地在致病性细菌基因组内预测获得新的效应蛋白序列奠定了基础;12个效应蛋白特有模体的获得及其基因本体注释分析进一步理解了效应蛋白的作用机制。
基金supported by Cure Alzheimer’s Fund (to RET and SHC)JPB Foundation (to RET),and R56AG072054 (to SHC)。
文摘Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type Ⅲ domain-containing protein 5(FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.
基金supported by the National Key R&D Program of China(2019YFD1002000)the Science and Technology Programs of the Shandong Tobacco(KN273)Zunyi Tobacco(2021XM03).
文摘Ralstonia solanacearum is a widespread plant bacterial pathogen that can launch a range of type Ⅲ effectors(T3Es)to cause disease.In this study,we isolate a pathogenic R.solanacearum strain named P380 from tomato rhizosphere.Five out of 12 core T3Es of strain P380 are introduced into Pseudomonas syringae DC3000D36E separately to determine their functions in interacting with plants.DC3000D36E that harbors each effector suppresses FliC-triggered Pti5 and ACRE31 expression,ROS burst,and callose deposition.RipAE,RipU,and RipW elicit cell death as well as upregulate the MAPK cascades in Nicotiana benthamiana.The derivatives RipC1^(△DDXDX(T/V))and RipW^(△DDKXXQ)but not RipAE^(K310R) fail to suppress ROS burst.Moreover,RipAE^(K310R) and RipW^(△DDKXXQ) retain the cell death elicitation ability.RipAE and RipW are associated with salicylic acid and jasmonic acid pathways,respectively.RipAE and RipAQ significantly promote the propagation of DC3000D36E in plants.The five core T3Es localize in diverse subcellular organelles of nucleus,plasma membrane,endoplasmic reticulum,and Golgi network.The suppressor of G2 allele of Skp1 is required for RipAE but not RipU-triggered cell death in N.benthamiana.These results indicate that the core T3Es in R.solanacearum play diverse roles in plantpathogen interactions.