In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous ter...In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous terrain of this area, combined with rapid rainfall accumulation, has led to a surge in flash floods and severe geological hazards. On August 10, 2019, Typhoon Lekima made landfall in Zhejiang Province, China, and its torrential rainfall triggered extensive landslides, resulting in substantial damage and economic losses. Utilizing high-resolution satellite images, we compiled a landslide inventory of the affected area, which comprises a total of 2,774 rainfallinduced landslides over an area of 2965 km2. The majority of these landslides were small to mediumsized and exhibited elongated, clustered patterns. Some landslides displayed characteristics of high-level initiation, obstructing or partially blocking rivers, leading to the formation of debris dams. We used the inventory to analyze the distribution pattern of the landslides and their relationship with topographical, geological, and hydrological factors. The results showed that landslide abundance was closely related to elevation, slope angle, faults, and road density. The landslides were predominantly located in hilly and low mountainous areas, with elevations ranging from 150 to 300 m, slopes of 20 to 30 degrees, and a NE-SE aspect. Notably, we observed the highest Landslide Number Density(LND) and Landslide Area Percentage(LAP) in the rhyolite region. Landslides were concentrated within approximately 4 km on either side of fault zones, with their size and frequency negatively correlated with distances to faults, roads, and river systems. Furthermore, under the influence of typhoons, regions with denser vegetation cover exhibited higher landslide density, reaching maximum values in shrubland areas. In areas experiencing significantly increased concentrated rainfall, landslide density also showed a corresponding rise. In terms of spatial distribution, the rainfall-triggered landslides primarily occurred in the northeastern part of the study area, particularly in regions characterized by complex topography such as Shanzao Village in Yantan Town, Xixia Township, and Shangzhang Township. The research findings offer crucial data on the rainfallinduced landslides triggered by Typhoon Lekima, shedding light on their spatial distribution patterns. These findings provide valuable references for mitigating risks and planning reconstruction in typhoon-affected area.展开更多
This study used the dynamic synthetic analysis method to analyze the causes of attenuated heavy rainfall from a westward moving typhoon after landfall over Fujian by focusing on the genetic diagrgnosis of the stronges...This study used the dynamic synthetic analysis method to analyze the causes of attenuated heavy rainfall from a westward moving typhoon after landfall over Fujian by focusing on the genetic diagrgnosis of the strongest 12 h rainstorms based on typhoon data obtained from the Shanghai Typhoon Institute,precipitation data from Fujian Province,and NCEP reanalysis data from the United States.The results showed that:(1)the environmental field of the westward moving typhoon benefits the long-term maintenance of convergence in coastal areas,which provides synoptic scale forcing for rainstorm intensification along the southeastern coast;(2)the southwest jet in the boundary layer transports warm water vapor from low latitudes into the eastern circulation of typhoon;the water vapor peak occurs 6 h before the strongest rainstorm and can be used as a reference index to predict heavy rainstorms;(3)the high altitude strong divergence center is located at 100-150 hPa,and the strong convergence center is located near 925-950 hPa in the boundary layer,which is higher(lower)than the 200 hPa divergence layer(850 hPa convergence layer)commonly used in professional work;(4)warm and wet advection in the boundary layer transports unstable energy and weak cold air southward,strengthens the baroclinic pressure,increases the latent heat flux on the sea surface,and plays a significant role in triggering and developing mesoscale convective clouds along the southeast coast.展开更多
A heavy storm rainfall caused by Typhoon Aere (No.0418) when landing at Fujian has been successfully simulated by using AREM model. The simulation result is scale-separated by spatial band-pass filtering, which reveal...A heavy storm rainfall caused by Typhoon Aere (No.0418) when landing at Fujian has been successfully simulated by using AREM model. The simulation result is scale-separated by spatial band-pass filtering, which reveals the mesoscale low pressure and convergence line that has direct impact on this rainfall process. The physical characteristics of the two mesoscale systems and their relation with rainfall are also analyzed. Study shows that there exists a well corresponding relationship between the storm rainfall and mesoscale divergence and strong updraft arising from the convergence, which is caused by the interactions between the mesoscale systems and topographic features, and is directly responsible for the rainfall.展开更多
Based on a successful simulation of Typhoon Haikui(2012) using WRF(Weather Research & Forecasting)model with the WSM6 microphysics scheme, a high-resolution model output is presented and analyzed in this study. To...Based on a successful simulation of Typhoon Haikui(2012) using WRF(Weather Research & Forecasting)model with the WSM6 microphysics scheme, a high-resolution model output is presented and analyzed in this study. To understand the cause of the average gridded rainfall stability and increases after Haikui's landfall, this research examines the fields of the physical terms as well as the vapor and condensate distributions and budgets, including their respective changes during the landing process. The environmental vapor supply following the typhoon landfall has no significant difference from that before the landfall. Although Haikui's secondary circulation weakens, this circulation is not conducive to typhoon rainfall stability or increases, although the amounts of the six kinds of water substances(vapor,cloud water, cloud ice, snow, rain, and graupel) increase in the outer region of the typhoon. This reallocation of water substances is essential to the maintenance of rainfall. The six kinds of water substances are classified as vapor, clouds(cloud water and ice) and precipitation(snow, rain, and graupel) to diagnose their budgets. This sorting reveals that the changes in the budgets of different kinds of water substances, caused by the reduced mixing ratios of snow and ice, the water consumption of clouds, and the transformation of graupel, induce increased concentrations of precipitation fallout,which occur closer to the ground after typhoon landfall. In addition, this pattern is an efficient way for Haikui's rainfall to remain stable after its landfall. Thus, the allocation and budget analyses of water substances are meaningful when forecasting the typhoon rainfall stability and increases after landfall.展开更多
By investigating the effects on deep ocean ambient noise of typhoon "KAI-TAK" which passed the north area of the South China Sea,it is shown that the wind speed,the rainfall intensity and the long wave swell caused ...By investigating the effects on deep ocean ambient noise of typhoon "KAI-TAK" which passed the north area of the South China Sea,it is shown that the wind speed,the rainfall intensity and the long wave swell caused by typhoon affect the ocean ambient noise significantly.The correlation between the ocean ambient noise and the wind speed during the typhoon is much better than that in the non-typhoon period in the same Beaufort scale.Analysis of the correlation between the 415 h ocean ambient noise measured data and wind speed shows that,when the frequency is greater than 300 Hz,the correlation coefficient between the ocean ambient noise and the wind speed is greater than 0.5,achieving a moderate correlation;when the frequency is greater than 630 Hz,the correlation coefficient is between 0.8 and 0.9,achieving a high degree of correlation.The correlation between the ocean ambient noise and the wind speed is better than that between the ocean ambient noise and the significant wave height when the frequency is greater than 300 Hz.The correlation between the ocean ambient noise and the wind speed in infrasonic band from 10 Hz to 20 Hz is poor in the South China Sea,because the shipping is busy in this sea area and the ocean ambient noise is contaminated by the ship noise even during the typhoon.展开更多
基金supported by National Natural Science Foundation of China (42277136)Natural Science Research Project of Anhui Educational Committee (2023AH030041)National Key Research and Development Program of China (2021YFB3901205)。
文摘In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous terrain of this area, combined with rapid rainfall accumulation, has led to a surge in flash floods and severe geological hazards. On August 10, 2019, Typhoon Lekima made landfall in Zhejiang Province, China, and its torrential rainfall triggered extensive landslides, resulting in substantial damage and economic losses. Utilizing high-resolution satellite images, we compiled a landslide inventory of the affected area, which comprises a total of 2,774 rainfallinduced landslides over an area of 2965 km2. The majority of these landslides were small to mediumsized and exhibited elongated, clustered patterns. Some landslides displayed characteristics of high-level initiation, obstructing or partially blocking rivers, leading to the formation of debris dams. We used the inventory to analyze the distribution pattern of the landslides and their relationship with topographical, geological, and hydrological factors. The results showed that landslide abundance was closely related to elevation, slope angle, faults, and road density. The landslides were predominantly located in hilly and low mountainous areas, with elevations ranging from 150 to 300 m, slopes of 20 to 30 degrees, and a NE-SE aspect. Notably, we observed the highest Landslide Number Density(LND) and Landslide Area Percentage(LAP) in the rhyolite region. Landslides were concentrated within approximately 4 km on either side of fault zones, with their size and frequency negatively correlated with distances to faults, roads, and river systems. Furthermore, under the influence of typhoons, regions with denser vegetation cover exhibited higher landslide density, reaching maximum values in shrubland areas. In areas experiencing significantly increased concentrated rainfall, landslide density also showed a corresponding rise. In terms of spatial distribution, the rainfall-triggered landslides primarily occurred in the northeastern part of the study area, particularly in regions characterized by complex topography such as Shanzao Village in Yantan Town, Xixia Township, and Shangzhang Township. The research findings offer crucial data on the rainfallinduced landslides triggered by Typhoon Lekima, shedding light on their spatial distribution patterns. These findings provide valuable references for mitigating risks and planning reconstruction in typhoon-affected area.
基金sponsored by the Fujian Meteorological Bureau in 2019 Open-end fund project(Straits Institute)(2019KH01)co-financedChina Meteorological Administration Forecaster Special Project(CMAYBY2018-035,CMAYBY2020-062)
文摘This study used the dynamic synthetic analysis method to analyze the causes of attenuated heavy rainfall from a westward moving typhoon after landfall over Fujian by focusing on the genetic diagrgnosis of the strongest 12 h rainstorms based on typhoon data obtained from the Shanghai Typhoon Institute,precipitation data from Fujian Province,and NCEP reanalysis data from the United States.The results showed that:(1)the environmental field of the westward moving typhoon benefits the long-term maintenance of convergence in coastal areas,which provides synoptic scale forcing for rainstorm intensification along the southeastern coast;(2)the southwest jet in the boundary layer transports warm water vapor from low latitudes into the eastern circulation of typhoon;the water vapor peak occurs 6 h before the strongest rainstorm and can be used as a reference index to predict heavy rainstorms;(3)the high altitude strong divergence center is located at 100-150 hPa,and the strong convergence center is located near 925-950 hPa in the boundary layer,which is higher(lower)than the 200 hPa divergence layer(850 hPa convergence layer)commonly used in professional work;(4)warm and wet advection in the boundary layer transports unstable energy and weak cold air southward,strengthens the baroclinic pressure,increases the latent heat flux on the sea surface,and plays a significant role in triggering and developing mesoscale convective clouds along the southeast coast.
文摘A heavy storm rainfall caused by Typhoon Aere (No.0418) when landing at Fujian has been successfully simulated by using AREM model. The simulation result is scale-separated by spatial band-pass filtering, which reveals the mesoscale low pressure and convergence line that has direct impact on this rainfall process. The physical characteristics of the two mesoscale systems and their relation with rainfall are also analyzed. Study shows that there exists a well corresponding relationship between the storm rainfall and mesoscale divergence and strong updraft arising from the convergence, which is caused by the interactions between the mesoscale systems and topographic features, and is directly responsible for the rainfall.
基金National Natural Science Foundation of China(41275002,41175054)Key Program of National Natural Science Foundation of China(41230421)
文摘Based on a successful simulation of Typhoon Haikui(2012) using WRF(Weather Research & Forecasting)model with the WSM6 microphysics scheme, a high-resolution model output is presented and analyzed in this study. To understand the cause of the average gridded rainfall stability and increases after Haikui's landfall, this research examines the fields of the physical terms as well as the vapor and condensate distributions and budgets, including their respective changes during the landing process. The environmental vapor supply following the typhoon landfall has no significant difference from that before the landfall. Although Haikui's secondary circulation weakens, this circulation is not conducive to typhoon rainfall stability or increases, although the amounts of the six kinds of water substances(vapor,cloud water, cloud ice, snow, rain, and graupel) increase in the outer region of the typhoon. This reallocation of water substances is essential to the maintenance of rainfall. The six kinds of water substances are classified as vapor, clouds(cloud water and ice) and precipitation(snow, rain, and graupel) to diagnose their budgets. This sorting reveals that the changes in the budgets of different kinds of water substances, caused by the reduced mixing ratios of snow and ice, the water consumption of clouds, and the transformation of graupel, induce increased concentrations of precipitation fallout,which occur closer to the ground after typhoon landfall. In addition, this pattern is an efficient way for Haikui's rainfall to remain stable after its landfall. Thus, the allocation and budget analyses of water substances are meaningful when forecasting the typhoon rainfall stability and increases after landfall.
基金supported by the Natural Science Foundation of Fujian Province of China(2016J01019)the Public Science and Technology Research Funds Projects of Ocean(201305038)
文摘By investigating the effects on deep ocean ambient noise of typhoon "KAI-TAK" which passed the north area of the South China Sea,it is shown that the wind speed,the rainfall intensity and the long wave swell caused by typhoon affect the ocean ambient noise significantly.The correlation between the ocean ambient noise and the wind speed during the typhoon is much better than that in the non-typhoon period in the same Beaufort scale.Analysis of the correlation between the 415 h ocean ambient noise measured data and wind speed shows that,when the frequency is greater than 300 Hz,the correlation coefficient between the ocean ambient noise and the wind speed is greater than 0.5,achieving a moderate correlation;when the frequency is greater than 630 Hz,the correlation coefficient is between 0.8 and 0.9,achieving a high degree of correlation.The correlation between the ocean ambient noise and the wind speed is better than that between the ocean ambient noise and the significant wave height when the frequency is greater than 300 Hz.The correlation between the ocean ambient noise and the wind speed in infrasonic band from 10 Hz to 20 Hz is poor in the South China Sea,because the shipping is busy in this sea area and the ocean ambient noise is contaminated by the ship noise even during the typhoon.