Tryptophan derivatives have long been used as site-specific biological probes. 4-Cyanotrypto- phan emits in the visible region and is the smallest blue fluorescent amino acid probe for bio- logical applications. Other...Tryptophan derivatives have long been used as site-specific biological probes. 4-Cyanotrypto- phan emits in the visible region and is the smallest blue fluorescent amino acid probe for bio- logical applications. Other indole or tryptophan analogs may emit at even longer wavelengths than 4-cyanotryptophan. We performed FTIR, UV-Vis, and steady-state and time-resolved fluorescence spectroscopy on six ester-derivatized indoles in different solvents. Methyl indole- 4-carboxylate emits at 450 nrn with a long fluorescence lifetirne, and is a promising candidate for a fluorescent probe. The ester-derivatized indoles could be used as spectroscopic probes to study local protein environments. Our measurements provide a guide for choosing esterderivatized indoles to use in practice and data for computational modeling of the effect of substitution on the electronic transitions of indole.展开更多
基金supported by Beijing Natural Science Foundation(L172028)the National Natural Science Foundation of China(No.21773012 and No.91753118)+1 种基金the Recruitment Program of Global Youth Expertsthe Fundamental Research Funds for Central Universities
文摘Tryptophan derivatives have long been used as site-specific biological probes. 4-Cyanotrypto- phan emits in the visible region and is the smallest blue fluorescent amino acid probe for bio- logical applications. Other indole or tryptophan analogs may emit at even longer wavelengths than 4-cyanotryptophan. We performed FTIR, UV-Vis, and steady-state and time-resolved fluorescence spectroscopy on six ester-derivatized indoles in different solvents. Methyl indole- 4-carboxylate emits at 450 nrn with a long fluorescence lifetirne, and is a promising candidate for a fluorescent probe. The ester-derivatized indoles could be used as spectroscopic probes to study local protein environments. Our measurements provide a guide for choosing esterderivatized indoles to use in practice and data for computational modeling of the effect of substitution on the electronic transitions of indole.