For patients with chronic myeloid leukemia(CML) failing imatinib therapy,second-generation tyrosine kinase inhibitors(TKIs) are recommended.Here,we describe two patients with advanced CML who failed imatinib thera...For patients with chronic myeloid leukemia(CML) failing imatinib therapy,second-generation tyrosine kinase inhibitors(TKIs) are recommended.Here,we describe two patients with advanced CML who failed imatinib therapy and did not tolerate the recommended dose of dasatinib,but then achieved a major molecular response with the combination of imatinib and dasatinib with no significant extramedullar/ toxicity.Our observations suggest that combination of TKIs may provide an additive/synergistic antileukemic effect.展开更多
Lung cancer is the most frequently diagnosed cancer and a leading cause of cancer mortality worldwide, with adenocarcinoma being the most common histological subtype. Deeper understanding of the pathobiology of non-sm...Lung cancer is the most frequently diagnosed cancer and a leading cause of cancer mortality worldwide, with adenocarcinoma being the most common histological subtype. Deeper understanding of the pathobiology of non-small cell lung cancer(NSCLC) has led to the development of small molecules that target genetic mutations known to play critical roles in progression to metastatic disease and to influence response to targeted therapies. The principle goal of precision medicine is to define those patient populations most likely to respond to targeted therapies. However, the cancer genome landscape is composed of relatively few "mountains" [representing the most commonly mutated genes like KRAS, epidermal growth factor(EGFR), and anaplastic lymphoma kinase(ALK)] and a vast number of "hills"(representing low frequency but potentially actionable mutations). Low-frequency lesions that affect a druggable gene product allow a relatively small population of cancer patients for targeted therapy to be selected.展开更多
基金supported by the National Natural Science Foundation of the People's Republic of China(No.81070437,81270614 and 81300379)the National Science & Technology Pillar Program of China(No.2008BAI61B01)
文摘For patients with chronic myeloid leukemia(CML) failing imatinib therapy,second-generation tyrosine kinase inhibitors(TKIs) are recommended.Here,we describe two patients with advanced CML who failed imatinib therapy and did not tolerate the recommended dose of dasatinib,but then achieved a major molecular response with the combination of imatinib and dasatinib with no significant extramedullar/ toxicity.Our observations suggest that combination of TKIs may provide an additive/synergistic antileukemic effect.
文摘Lung cancer is the most frequently diagnosed cancer and a leading cause of cancer mortality worldwide, with adenocarcinoma being the most common histological subtype. Deeper understanding of the pathobiology of non-small cell lung cancer(NSCLC) has led to the development of small molecules that target genetic mutations known to play critical roles in progression to metastatic disease and to influence response to targeted therapies. The principle goal of precision medicine is to define those patient populations most likely to respond to targeted therapies. However, the cancer genome landscape is composed of relatively few "mountains" [representing the most commonly mutated genes like KRAS, epidermal growth factor(EGFR), and anaplastic lymphoma kinase(ALK)] and a vast number of "hills"(representing low frequency but potentially actionable mutations). Low-frequency lesions that affect a druggable gene product allow a relatively small population of cancer patients for targeted therapy to be selected.