Herein, novel plasmonic Bi metal in situ deposited in reduced Ti O2 microspheres(Bi@R-Ti O2) are fabricated via a bimetallic MOF-derived synthesized strategy by adjusting the synthesizing temperature. Different charac...Herein, novel plasmonic Bi metal in situ deposited in reduced Ti O2 microspheres(Bi@R-Ti O2) are fabricated via a bimetallic MOF-derived synthesized strategy by adjusting the synthesizing temperature. Different characterization techniques, including XRD, SEM, TEM, XPS, DRS, PL, EIS, and photocurrent generation, are performed to investigate the structural and optical properties of the as-prepared samples. The results indicate that the Bi particles are generated inside and outside of reduced Ti O2 microspheres via the reduction of Ti4+ and Bi3+ by ethylene glycol. When the annealing temperature is controlled at 300 o C, the corresponding Bi@R-Ti O2-300 sample with an appropriate amount of Bi nanoparticles exhibits the highest full solar spectrum photocatalytic oxygen evolution activity(4728.709 μmol h–1 g–1), which is 5.9 and 9.5 times higher than that of pure Ti O2 and Bi-Ti bimetal organic frameworks(Bi-Ti-MOFs). Several reasons are suggested for the above results:(1) Bi metal behaves as an "electron acceptor" to accelerate the charge carrier transfer from Ti O2 to Bi;(2) The surface plasmon resonance effect of loaded metallic Bi particles can enhance the visible and NIR light absorption capacity;(3) The generation of Ti3+ further narrows the band gap of TiO2.展开更多
Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeol...Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeolite microspheres (Ca-MZS) and iron cross-linked nano-Fe3O4 modified zeolite microspheres (Fe-MZS) were prepared and compared for their adsorption performance.The effects of adsorbent dosage,solution pH,initial concentration and ion content on the removal of Cu^2+ from wastewater are investigated,and the adsorption kinetics and isotherms for the adsorbent materials were analyzed.The experimental results indicate that for the initial concentration of Cu^2+ of 30 mg/L,the adsorption is noted to be most stable.The optimal initial pH for adsorbing Cu^2+ is observed to be 5.5.At an optimal dosage of Ca-MZS of 900 mg/L,the adsorption capacity is measured to be 28.25 mg/g,along with the removal rate of 72.49%.The addition of Na+ and K+ affects the adsorption of Cu^2+.For the Na^+ and K^+ concentration of 0.2 mmol/L,the Cu^2+ removal rate by Ca-MZS drops to 11.94% and 22.12%,respectively.As compared with the adsorbents such as Natural Zeolite (NZ),Ca-MS and Fe-MZS,Ca-MZS demonstrates the best removal effect in solution,where the removal rate reaches 84.27%,with the maximum adsorption capacity of 28.09 mg/g.The Cu^2+ adsorption kinetics of Ca-MZS is observed to follow the Elovich kinetic model,with the adsorption isotherm data fitting the Freundlich isotherm model by using the non-linear method.展开更多
Al2 O3 hollow microspheres without noticeable aggregation have been prepared via a facile templating route with urea-mediated precipitation. The precipitation process is different from the surfaceadsorption method whi...Al2 O3 hollow microspheres without noticeable aggregation have been prepared via a facile templating route with urea-mediated precipitation. The precipitation process is different from the surfaceadsorption method which is confined to the adsorption capacity of the template surface. TEM and SEM images indicate that most of these Al2 O3 hollow microspheres with shell thickness of tens of nanometers and diameters in a narrow range of 100-200 nm consist of a shell of closely packed nanoparticles. The optimal amount of H2 O and EtOH are 40 and 120 m L, respectively. The specific surface area, average pore size and pore volume of the Al2 O3 hollow microspheres(calcinated at 600 ℃) are 328.52 m2/g, 17.496 nm and 1.985 cm3/g, respectively. As the calcination temperature increases from 600 to 1 100 ℃, the phase composition changes from γ-Al2 O3 to θ-Al2 O3 and a-Al2 O3, and the surface morphology appears to change from a relatively rough surface formed by nanoparticles to a smooth surface formed by lamellar, which lead to the closure of pore channels and the reduction of specific surface.展开更多
Magnetic alumina composite microspheres with γ-Fe 2 O 3 core/Al 2 O 3 shell structure were prepared by the oil column method. A dense silica layer was deposited on the surface of γ-Fe 2 O 3 particles (denoted as γ...Magnetic alumina composite microspheres with γ-Fe 2 O 3 core/Al 2 O 3 shell structure were prepared by the oil column method. A dense silica layer was deposited on the surface of γ-Fe 2 O 3 particles (denoted as γ-Fe 2 O 3 /SiO 2 ) with a desired thickness to protect the iron oxide core against acidic or high temperature conditions. γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 particles with about 85 wt% Al 2 O 3 were obtained and showed to be suitable for practical applications as a magnetic catalyst or catalyst support due to their magnetic properties and pore structure. The products were characterized with scanning electron microscope (SEM) and transmission electron microscope (TEM), nitrogen adsorption-desorption, and vibrating sample magnetometer (VSM). The specific surface area and pore volume of the γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 composite microspheres calcined at 500 ? C were 200 m 2 /g and 0.77 cm 3 /g, respectively.展开更多
Fe_2O_3 sol with the particle diameter of 3-5 nm was flocculated by the addition of SDS, and the flocculate formed was redispersed by the further addition of that surfactant. Thus the surfactant bilayer was formed on ...Fe_2O_3 sol with the particle diameter of 3-5 nm was flocculated by the addition of SDS, and the flocculate formed was redispersed by the further addition of that surfactant. Thus the surfactant bilayer was formed on the surface of Fe_2O_3. The emulsion polymerization of styrene(St) adsolubilized on the surfactant adsorbed bilayer was carried out by initiator potassium persulfate(KPS). The UV-Vis and surface photovoltage spectra(SPS) indicate that the Fe_2O_3 particles were encapsulated in polystyrene(PSt) successfully.展开更多
Al2O3-ZrO2 microspheres were prepared by internal gelation method.The effects of Al3+on the stability of solution and performance of gel spheres were studied.Al3+had a great influence on the stability of the solutions...Al2O3-ZrO2 microspheres were prepared by internal gelation method.The effects of Al3+on the stability of solution and performance of gel spheres were studied.Al3+had a great influence on the stability of the solutions,and the more of the amount of Al3+,the shorter of the stabilization time.Because Al3+did not copolymerize with Zr4+during the sol-gel transformation,the strength of gel sphere added with Al3+was low and deformed easily as it was squeezed.The results of our experiments well verify Glasser team’s speculation and conclusions.At the same time,based on the experimental results,we prepared Al2O3-ZrO2 composite microspheres with higher content of Al2O3 by controlling the pH of the solution.The change curve of viscosity with time and the stabilization time of the solution with different Al3+dosage were given,which could provide references for industrial mass production.Samples without hydrothermal treatment cracked severely,while the samples hydrothermally treated kept structural integrity with no cracks after calcined.Al2O3-ZrO2 microspheres with no segregation and phase separation were prepared and alumina evenly distributed in the zirconia matrix.When the content of Al2O3 was low,the tetragonal phase was stable.And the cubic phase was obtained when the content of Al2O3 was more.展开更多
基金the National Natural Science Foundation of China(51872173 and 51772176)Taishan Scholarship of Young Scholars(tsqn201812068)+2 种基金Natural Science Foundation of Shandong Province(ZR2017JL020)Taishan Scholarship of Climbing Plan(tspd20161006)Key Research and Development Program of Shandong Province(2018GGX102028)~~
文摘Herein, novel plasmonic Bi metal in situ deposited in reduced Ti O2 microspheres(Bi@R-Ti O2) are fabricated via a bimetallic MOF-derived synthesized strategy by adjusting the synthesizing temperature. Different characterization techniques, including XRD, SEM, TEM, XPS, DRS, PL, EIS, and photocurrent generation, are performed to investigate the structural and optical properties of the as-prepared samples. The results indicate that the Bi particles are generated inside and outside of reduced Ti O2 microspheres via the reduction of Ti4+ and Bi3+ by ethylene glycol. When the annealing temperature is controlled at 300 o C, the corresponding Bi@R-Ti O2-300 sample with an appropriate amount of Bi nanoparticles exhibits the highest full solar spectrum photocatalytic oxygen evolution activity(4728.709 μmol h–1 g–1), which is 5.9 and 9.5 times higher than that of pure Ti O2 and Bi-Ti bimetal organic frameworks(Bi-Ti-MOFs). Several reasons are suggested for the above results:(1) Bi metal behaves as an "electron acceptor" to accelerate the charge carrier transfer from Ti O2 to Bi;(2) The surface plasmon resonance effect of loaded metallic Bi particles can enhance the visible and NIR light absorption capacity;(3) The generation of Ti3+ further narrows the band gap of TiO2.
基金Funded by the Science Foundation of Hubei Province of China(2015CFB706)。
文摘Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeolite microspheres (Ca-MZS) and iron cross-linked nano-Fe3O4 modified zeolite microspheres (Fe-MZS) were prepared and compared for their adsorption performance.The effects of adsorbent dosage,solution pH,initial concentration and ion content on the removal of Cu^2+ from wastewater are investigated,and the adsorption kinetics and isotherms for the adsorbent materials were analyzed.The experimental results indicate that for the initial concentration of Cu^2+ of 30 mg/L,the adsorption is noted to be most stable.The optimal initial pH for adsorbing Cu^2+ is observed to be 5.5.At an optimal dosage of Ca-MZS of 900 mg/L,the adsorption capacity is measured to be 28.25 mg/g,along with the removal rate of 72.49%.The addition of Na+ and K+ affects the adsorption of Cu^2+.For the Na^+ and K^+ concentration of 0.2 mmol/L,the Cu^2+ removal rate by Ca-MZS drops to 11.94% and 22.12%,respectively.As compared with the adsorbents such as Natural Zeolite (NZ),Ca-MS and Fe-MZS,Ca-MZS demonstrates the best removal effect in solution,where the removal rate reaches 84.27%,with the maximum adsorption capacity of 28.09 mg/g.The Cu^2+ adsorption kinetics of Ca-MZS is observed to follow the Elovich kinetic model,with the adsorption isotherm data fitting the Freundlich isotherm model by using the non-linear method.
文摘Al2 O3 hollow microspheres without noticeable aggregation have been prepared via a facile templating route with urea-mediated precipitation. The precipitation process is different from the surfaceadsorption method which is confined to the adsorption capacity of the template surface. TEM and SEM images indicate that most of these Al2 O3 hollow microspheres with shell thickness of tens of nanometers and diameters in a narrow range of 100-200 nm consist of a shell of closely packed nanoparticles. The optimal amount of H2 O and EtOH are 40 and 120 m L, respectively. The specific surface area, average pore size and pore volume of the Al2 O3 hollow microspheres(calcinated at 600 ℃) are 328.52 m2/g, 17.496 nm and 1.985 cm3/g, respectively. As the calcination temperature increases from 600 to 1 100 ℃, the phase composition changes from γ-Al2 O3 to θ-Al2 O3 and a-Al2 O3, and the surface morphology appears to change from a relatively rough surface formed by nanoparticles to a smooth surface formed by lamellar, which lead to the closure of pore channels and the reduction of specific surface.
基金supported by the State Key Basic Research Program of PRC (2006CB202505)the National Natural Science Foundation of China (20806093)
文摘Magnetic alumina composite microspheres with γ-Fe 2 O 3 core/Al 2 O 3 shell structure were prepared by the oil column method. A dense silica layer was deposited on the surface of γ-Fe 2 O 3 particles (denoted as γ-Fe 2 O 3 /SiO 2 ) with a desired thickness to protect the iron oxide core against acidic or high temperature conditions. γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 particles with about 85 wt% Al 2 O 3 were obtained and showed to be suitable for practical applications as a magnetic catalyst or catalyst support due to their magnetic properties and pore structure. The products were characterized with scanning electron microscope (SEM) and transmission electron microscope (TEM), nitrogen adsorption-desorption, and vibrating sample magnetometer (VSM). The specific surface area and pore volume of the γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 composite microspheres calcined at 500 ? C were 200 m 2 /g and 0.77 cm 3 /g, respectively.
基金Supported by the National Natural Science Foundation of China(No. 2 99730 2 6 and 2 0 0 75 0 2 8) ,K.C.Wang Post-Doctoral Research Award Fund of Chinese Academ y of Sciences,and China Postdoctoral Science Foundation
文摘Fe_2O_3 sol with the particle diameter of 3-5 nm was flocculated by the addition of SDS, and the flocculate formed was redispersed by the further addition of that surfactant. Thus the surfactant bilayer was formed on the surface of Fe_2O_3. The emulsion polymerization of styrene(St) adsolubilized on the surfactant adsorbed bilayer was carried out by initiator potassium persulfate(KPS). The UV-Vis and surface photovoltage spectra(SPS) indicate that the Fe_2O_3 particles were encapsulated in polystyrene(PSt) successfully.
基金Funded by National Natural Science Foundation of China(No.91326203)。
文摘Al2O3-ZrO2 microspheres were prepared by internal gelation method.The effects of Al3+on the stability of solution and performance of gel spheres were studied.Al3+had a great influence on the stability of the solutions,and the more of the amount of Al3+,the shorter of the stabilization time.Because Al3+did not copolymerize with Zr4+during the sol-gel transformation,the strength of gel sphere added with Al3+was low and deformed easily as it was squeezed.The results of our experiments well verify Glasser team’s speculation and conclusions.At the same time,based on the experimental results,we prepared Al2O3-ZrO2 composite microspheres with higher content of Al2O3 by controlling the pH of the solution.The change curve of viscosity with time and the stabilization time of the solution with different Al3+dosage were given,which could provide references for industrial mass production.Samples without hydrothermal treatment cracked severely,while the samples hydrothermally treated kept structural integrity with no cracks after calcined.Al2O3-ZrO2 microspheres with no segregation and phase separation were prepared and alumina evenly distributed in the zirconia matrix.When the content of Al2O3 was low,the tetragonal phase was stable.And the cubic phase was obtained when the content of Al2O3 was more.