The metallogenetic porphyry bodies in the Nongping Au-Cu deposit, in the eastern Yanbian area, mainly include porphyritic granodiorite and biotite granodiorite porphyry. They are featured with high silicon and enrichm...The metallogenetic porphyry bodies in the Nongping Au-Cu deposit, in the eastern Yanbian area, mainly include porphyritic granodiorite and biotite granodiorite porphyry. They are featured with high silicon and enrichment in sodium, and classified into sodic rocks of low-K tholeiitic basalt series. Except slightly low Sr content, the rock basically has the geochemical characteristics of the adakite: relatively high A12O3 content, relatively low MgO content, depletion in Y and Yb; relative enrichment in large ion lithophile elements (LILEs) and light rare-earth elements (LREEs), relatively low content of high field strength elements (HFSEs); positive Eu anomaly or weak negative Eu anomaly. In situ zircon dating technology LA-MC-ICP-MS was used to conduct single-grain zircon dating of biotite granodiorite porphyry, and the results show that the age of metallogenetic porphyry body is 100.04±0.88 Ma, indicating that the porphyry bodies were emplaced in the late Cretaceous period. According to the regional tectonic setting and the comparison with the same kind of deposits, we think that the metallogenetic porphyry bodies in the Nongping Au-Cu deposit have a close genetic connection with the subduction of the Pacific plate in the late Yanshanian period. The adakitic magma generated from partial melting of the subducting plate has high formation temperature, high oxygen fugacity, and volatile constituents' enrichment, so it is helpful for enrichment of metallogenetic elements and plays an important role in the formation of porphyry Au-Cu deposits in this region.展开更多
The Dabate Mo-Cu deposit is a medium-sized porphyry-type deposit in the Sailimu Lake region, western Tianshan, China. We present the geology, geochemistry and zircon U-Pb geochronology of granite porphyries from the D...The Dabate Mo-Cu deposit is a medium-sized porphyry-type deposit in the Sailimu Lake region, western Tianshan, China. We present the geology, geochemistry and zircon U-Pb geochronology of granite porphyries from the Dabate district with the intent to constrain their tectonic setting and petrogenesis. Porphyries in the Dabate district include granite porphyry I(gray white color with large phenocrysts), granite porphyry II(pink color with small phenocrysts) and quartz porphyry. Granite porphyry II is the Cu and Mo ore-bearing granitoid in the Dabate deposit. LA-ICPMS zircon U-Pb analyses indicate that granite porphyry II was emplaced at 284.2±1.8 Ma. Granite porphyry I and II have similar geochemical features and are both highly fractionated granites:(1) They have high SiO2 content(70.93–80.18 wt% and 72.14–72.64 wt%, respectively), total alkali(7.58–8.95 wt% and 9.35–9.68 wt%, respectively), mafic index(0.95–0.98 and 0.93–0.94, respectively) and felsic index(0.79–0.94 and 0.89–0.91, respectively);(2) They are characterized by pronounced negative Eu anomaly, "seagullstyle" chondrite-normalized REE patterns and "tetrad effect" of REE;(3) They are rich in Rb, K, Th, Ta, Zr, Hf, Y and REE, but depleted in Sr, P, Ti and Nb. The magma of granite porphyries in Dabate can be interpreted to have been generated by partial melting of the upper crust due to mantle-derived magma underplating in a post-collisional extensional setting.展开更多
The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cue Moe Au deposits have been discovered in rece...The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cue Moe Au deposits have been discovered in recent years. Geological mapping and drilling indicate the presence of various mineralized porphyritic intrusions in the Halasu Cue Au deposit, which is currently under exploration. Ue Pb dating of zircon crystals from four different mineralized porphyries reveals three significantly different ages of magmatic intrusion, i.e., ca. 372e382 Ma granodioritic porphyry and porphyritic granite, ca. 266 Ma quartz monzonitic porphyry, and ca. 216 Ma quartz dioritic porphyry. Ree Os dating of molybdenite from veinletdissemination ores in the granodioritic porphyry yields an age of mineralization of ca. 377 Ma, and Ar e Ar dating of K-feldspar from K-feldsparequartzechalcopyrite veins produces ages of ca. 269 and ca.198 Ma. The mineralization(and alteration) ages correspond broadly to the three episodes of magmatic intrusion, suggesting three overprinting porphyry mineralization events that are significantly separated in time. The first episode of porphyry intrusion and mineralization may be related to the magmatic arc being above a plate subduction zone, and the second was formed in a late-collisional environment during the closing of the Junggar Ocean, whereas the third episode of mineralization took place in the postcollisional stage. This case study suggests that in orogens where major porphyry deposits have been found in magmatic arc environments, the potential of discovering late- to post-collisional porphyry deposits cannot be neglected; conversely, in orogens where most porphyry deposits have late- to postcollisional ages, more attention should be paid to porphyries that were formed earlier in magmatic arc environments.展开更多
The Wurinitu Mo deposit is one of the newly found molybdenum deposits in the southwestern part of the late Paleozoic–Mesozoic Erenhot–Dong-Ujimqin metallogenic belt (S-EDMB), Inner Mongolia, China. In the present ...The Wurinitu Mo deposit is one of the newly found molybdenum deposits in the southwestern part of the late Paleozoic–Mesozoic Erenhot–Dong-Ujimqin metallogenic belt (S-EDMB), Inner Mongolia, China. In the present study, the mineralization age of the Wurinitu deposit is constrained to 137.3 ± 1.3 to 131.9 ± 1.5 Ma based on a combination of the laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) zircon U–Pb dating of the mineralization related fine-grained monzonitic granite and the post-mineralization granite porphyry. The results of zircon Lu–Hf isotopes, combined with the geochemical characteristics of the granites in the S-EDMB, suggest that the Wurinitu Mo deposit was formed in an extensional environment in relation to the subduction of the Paleo-Pacific plate in late Mesozoic. The Wurinitu deposit shares similarities with the classical Climax-type porphyry molybdenum deposits in tectonic setting, mineral assemblages, and metal zonation.展开更多
The newly discovered Paodaoling porphyry Au deposit from the Guichi region, Lower Yangtze River Metallogenic Belt (LYRB), contains 〉35 tons of Au at an average grade of -1.7 g/t. It is a porphyry 'Au-only' deposi...The newly discovered Paodaoling porphyry Au deposit from the Guichi region, Lower Yangtze River Metallogenic Belt (LYRB), contains 〉35 tons of Au at an average grade of -1.7 g/t. It is a porphyry 'Au-only' deposit, as revealed by current exploration in the depths, mostly above -400 m, which is quite uncommon among coeval porphyry mineralization along the LYRB. Additionally, there are also Cu-Au bearing porphyries and barren alkaline granitoids in the Paodaoling district. Zircon LA-ICP-MS U-Pb dating of the Cu-Au-bearing porphyries yield an age of 141-140 Ma, falling within the main magmatic stage of the LYRB, whereas the barren granites give an age of 125-120 Ma, coeval with the regional A- type granites. The Cu-Au-bearing porphyries are LILE-, LREE-enriched and HFSE-depleted, typical of arc magmatic affinities. The barren granites are HFSE-enriched, with lower LREE/HREE ratios and pronounced negative Eu anomalies. The Cu-Au-bearing porphyries in the Paodaoling district have high oxygen fugacities and high water content. Pyrite sulfur isotopes of the Paodaoling gold deposit indicate a magmatic-sedimentary mixed source for the ore-forming fluids. Based on the alteration and poly-metal zonation of the deepest exploration drill hole from the Paodaoling Au deposit, we propose that Cu ore bodies could lie at depth beneath the current Au ore bodies. The magmatism and associated Cu-Au mineralization of the Paodaoling district are likely to have formed in a subduction setting, during slab rollback of the paleo-Pacific plate.展开更多
The Fenghuangshan skarn-type Cu deposit, Tongling Ore Cluster, Anhui Province, is an important component in the Middle-Lower Yangtze River ore-forming belt. To better understand magmatism and its relationship to miner...The Fenghuangshan skarn-type Cu deposit, Tongling Ore Cluster, Anhui Province, is an important component in the Middle-Lower Yangtze River ore-forming belt. To better understand magmatism and its relationship to mineralization, we investigated geochemical features, ore-forming fluids, and geochronology of the Xinwuli intrusion and the related Fenghuangshan Cu deposit. Lithogeochemical characteristics show that the Xinwuli quartz monzodiorite is formed by mixing magma derived from upper mantle alkaline basalt that has been contaminated by crust materials. C, H and O isotopes indicate that ore-forming fluids mainly come from the magma, with minor amounts of meteoric fluids involved at the late stage. S and Pb isotopic components indicate that ore-forming materials are derived from the mantle. Molybdenite Re-Os isotopic dating yields Re-Os model ages ranging from 139.1±2.4 Ma to 142.0±2.2 Ma, with an isochronal age of 141.1±1.4 Ma, which is consistent with sensitive, high-resolution ion microprobe (SHRIMP) zircon U-Pb ages of quartz monzodiorite and granodiorite in the mining area. Dating analysis yields ages from 136.0±2.0 Ma to 143.0±2.4 Ma for the quartz monzodiorite (a weighted average of 139.4±1.2 Ma) and ages from 136.7±2.0 Ma to 145.3±2.4 Ma for granodiorite (a weighted average of 141.0±1.1 Ma).展开更多
This paper focused on the zircon sensitive high resolution ion micro-probeU-Pb geochronology of the tourmalinites from boron-bearing series of borate deposits in Eastern Liaoning. The zircons commonly have core-rim st...This paper focused on the zircon sensitive high resolution ion micro-probeU-Pb geochronology of the tourmalinites from boron-bearing series of borate deposits in Eastern Liaoning. The zircons commonly have core-rim structures, most cores show oscillatory zoning in cathodoluminescence and plane polarized light images, suggesting a magmatic detrital origin. Ages of the magmatic detrital zircons from the hyalotonrmalite samples (N13) and (N14) are 2175 ± 5 Ma and 2171 ± 9 Ma, respectively. Moreover, metamorphic zircon from the sample (N13) shows an age of 1906 ± 4 Ma. Zircon core and rim from the hyalotourmalite sample (N02) record ages of 2171 ± 6 Ma and 1889± 62 Ma, which are explained as indicating the formation and metamorphic ages. Combined with the geological and geochemical studies, it can be concluded that the tourmalinites are formed during sedimentary exhalative mineralizations in the mid-Paleoproterozoic (-170 Ma) and underwent the metamorphism in the late-Paleoproterozoic (-1900 Ma). The tourmalinites are the products of submarine acid volcanism in the extension rifting phase of the Liaoji Paleoproterozoic Rift, the rockforming materials of which are derived from the mantle sources with recycling crustal contamination. The emergence of tourmalinites not only indicates the mid-Paleoproterozoic tectonic-magmatic processes, but also provides impetus, heat and material sources for the mineralization of borate deposits in Eastern Liaoning.展开更多
Compared to other Mo provinces,few studies focused on the South China Mo Province(SCMP),especially for Early Cretaceous Mo mineralization.The Lufeng porphyry Mo deposit in the SCMP is characterized by disseminated and...Compared to other Mo provinces,few studies focused on the South China Mo Province(SCMP),especially for Early Cretaceous Mo mineralization.The Lufeng porphyry Mo deposit in the SCMP is characterized by disseminated and veinlet-type mineralization in granite porphyry,gneiss,and rhyolite.In this study,six molybdenite samples yield a Re–Os isochron age of 108.0±1.8 Ma,which is consistent with the zircon U–Pb age of the granite porphyry(108.4±0.8 Ma).The coincidence of magmatic and hydrothermal activities indicates that Mo mineralization was associated with the intrusion of granite porphyry during the late Early Cretaceous.A compilation of U–Pb and Re–Os chronological data suggests that an extensive and intensive Mo mineralization event occurred in the SCMP during the late Early Cretaceous.The marked difference in molybdenite Re contents between Cu-bearing(85–536 ppm)and Cu-barren(1.3–59 ppm)Mo deposits of the late Early Cretaceous indicates that the ore-forming materials were derived from strong crust–mantle interactions.Together with regional petrological and geochemical data,this study suggests that late Early Cretaceous Mo mineralization in the SCMP occurred in an extensional setting associated with the roll-back of the Paleo-Pacific slab.展开更多
Epithermal gold deposits are typical precious metal deposits related to volcanic and subvolcanic magmatism.Due to the lack of direct geological and petrographic evidences,the origin of the ore-forming fluid is deduced...Epithermal gold deposits are typical precious metal deposits related to volcanic and subvolcanic magmatism.Due to the lack of direct geological and petrographic evidences,the origin of the ore-forming fluid is deduced from the spatial diagenesis-mineralization relationship,chronological data,physicochemical characteristics of mineral fluid inclusions,mineral or rock elements and isotopic geochemical characteristics.By objectively examining this scientific problem via a geological field survey and petrographic analysis of the Gaosongshan epithermal gold deposit,we recently discovered and verified the following points:(1) Pyrite-bearing spherical quartz aggregates (PSQA) occur in the rhyolitic porphyry;(2) the mineralization is structurally dominated by WNW- and ENE-trending systems and occurs mostly in hydrothermal breccias and pyrite-quartz veins,and the ore types are mainly hematite-crusted quartz,hydrothermal breccia,massive pyrite-quartz,etc.;(3) the alteration types consist of prevalent silicification,sericitization,propylitization and carbonation,with local adularization and illitization.The ore minerals are mainly pyrite,primary hematite,native gold,and electrum,with lesser amounts of chalcopyrite,magnetite,sphalerite,and galena,indicating a characteristic epithermal low-sulfidation deposit.The ore-forming fluid may have been primarily derived from magmatic fluid exsolved from a crystallizing rhyolitic porphyry magma.Further zircon U-Pb geochronology,fluid inclusion,physicochemical and isotopic geochemical analyses revealed that (1) rhyolitic porphyry magmatism occurred at 104.6 ± 1.0 Ma,whereas the crystallization of the PSQA occurred at 100.8 ± 2.1 Ma;(2) the hydrothermal fluid of the pre-ore stage was an exsolved CO2-bearing H2O-NaCl magmatic fluid that produced inclusions mainly composed of pure vapor (PV),vapor-rich (WV) and liquid-rich (WL) inclusions with a small number of melt-(M) and solid-bearing (S) inclusions;mineralization-stage quartz contains WL and rare PV,WV and pure liquid (PL) inclusions characterized by the H2O-NaCl system with low formation temperatures and low salinities;(3) the characteristics of hydrogen,oxygen,sulfur,and lead isotopes and those of rare earth elements (REEs) provide insight into the affinity between PSQA and orebodies resulting from juvenile crust or enriched mantle.Combined with previous research on the mineralogenetic epoch (99.32 ± 0.01 Ma),we further confirm that the mineralization of the deposit occurred in the late Early Cretaceous,which coincides with the extension of the continental margin induced by subduction of the Pacific Plate beneath the Eurasian Plate.The formation of the ore deposit was proceeded by a series of magmatic and hydrothermal events,including melting of enriched juvenile crust,upwelling,the eruption and emplacement of the rhyolitic magma,the exsolution and accumulation of magmatic hydrothermal fluid,decompression,the cooling and immiscibility/boiling of the fluid,and mixing of the magmatic fluid with meteoric water,in association with water-rock interaction.展开更多
Quartz porphyry in Yuejinshan Fe-polymetallic deposit is one of the rock masses, which formed the granite belt relating to the late Yanshanian skarn-type Fe-polymetallic deposits in the eastern Heilongjiang, and is al...Quartz porphyry in Yuejinshan Fe-polymetallic deposit is one of the rock masses, which formed the granite belt relating to the late Yanshanian skarn-type Fe-polymetallic deposits in the eastern Heilongjiang, and is also closely related to the metallogenic space of the Fe-polymetallic deposits. Quartz porphyry has the zircon U-Pb concordia age of 125.0±1.1 Ma, overall showing high Si(SiO_2=74.48%--75.00%), rich alkaline(Na_2O+K_2O=7.93%--8.17%, K_2O/Na_2O=1.39--1.46), and poor Mg(MgO=0.27%--0.31%), with the A/CNK value being 0.95--0.99, having the characteristics of obvious enrichment of LREE and medium Eu negative anomaly(0.69--0.74), indicating that the rock belongs to quasi-aluminous high potassium calc-alkaline series and has the same characteristics as those of the I-type granite. The rock is also characterized by the enrichment of LILE and active incompatible elements, and depletion of HFSE such as Nb, Ta, P and Ti, with the Mg~# value being 32--37, indicating that the rock originated from partial melting of crustal materials. It can be concluded from the above characteristics or data and from the distribution of contemporary magmatic rocks in the area, that quartz porphyry in Yuejinshan Fe-polymetallic deposit was formed in a tectonic background of the subduction of the paleo-Pacific plate in late Yanshanian.展开更多
基金financially supported by the China Geological Survey (No.1212011085485)Basic Research Foundation of Jilin University (No. 200903025 and 201004001)
文摘The metallogenetic porphyry bodies in the Nongping Au-Cu deposit, in the eastern Yanbian area, mainly include porphyritic granodiorite and biotite granodiorite porphyry. They are featured with high silicon and enrichment in sodium, and classified into sodic rocks of low-K tholeiitic basalt series. Except slightly low Sr content, the rock basically has the geochemical characteristics of the adakite: relatively high A12O3 content, relatively low MgO content, depletion in Y and Yb; relative enrichment in large ion lithophile elements (LILEs) and light rare-earth elements (LREEs), relatively low content of high field strength elements (HFSEs); positive Eu anomaly or weak negative Eu anomaly. In situ zircon dating technology LA-MC-ICP-MS was used to conduct single-grain zircon dating of biotite granodiorite porphyry, and the results show that the age of metallogenetic porphyry body is 100.04±0.88 Ma, indicating that the porphyry bodies were emplaced in the late Cretaceous period. According to the regional tectonic setting and the comparison with the same kind of deposits, we think that the metallogenetic porphyry bodies in the Nongping Au-Cu deposit have a close genetic connection with the subduction of the Pacific plate in the late Yanshanian period. The adakitic magma generated from partial melting of the subducting plate has high formation temperature, high oxygen fugacity, and volatile constituents' enrichment, so it is helpful for enrichment of metallogenetic elements and plays an important role in the formation of porphyry Au-Cu deposits in this region.
基金financially supported by NSFC project 41203035the National Basic Research Program(2012CB416803)the Chinese Geological Survey Program(DD20160124)
文摘The Dabate Mo-Cu deposit is a medium-sized porphyry-type deposit in the Sailimu Lake region, western Tianshan, China. We present the geology, geochemistry and zircon U-Pb geochronology of granite porphyries from the Dabate district with the intent to constrain their tectonic setting and petrogenesis. Porphyries in the Dabate district include granite porphyry I(gray white color with large phenocrysts), granite porphyry II(pink color with small phenocrysts) and quartz porphyry. Granite porphyry II is the Cu and Mo ore-bearing granitoid in the Dabate deposit. LA-ICPMS zircon U-Pb analyses indicate that granite porphyry II was emplaced at 284.2±1.8 Ma. Granite porphyry I and II have similar geochemical features and are both highly fractionated granites:(1) They have high SiO2 content(70.93–80.18 wt% and 72.14–72.64 wt%, respectively), total alkali(7.58–8.95 wt% and 9.35–9.68 wt%, respectively), mafic index(0.95–0.98 and 0.93–0.94, respectively) and felsic index(0.79–0.94 and 0.89–0.91, respectively);(2) They are characterized by pronounced negative Eu anomaly, "seagullstyle" chondrite-normalized REE patterns and "tetrad effect" of REE;(3) They are rich in Rb, K, Th, Ta, Zr, Hf, Y and REE, but depleted in Sr, P, Ti and Nb. The magma of granite porphyries in Dabate can be interpreted to have been generated by partial melting of the upper crust due to mantle-derived magma underplating in a post-collisional extensional setting.
基金funded by the Natural Science Foundation of China (No. U1303292)the Science and Technology Support Program of China (No. 2011BAB06B02)the China Geology Survey Program (No. 121211220926)
文摘The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cue Moe Au deposits have been discovered in recent years. Geological mapping and drilling indicate the presence of various mineralized porphyritic intrusions in the Halasu Cue Au deposit, which is currently under exploration. Ue Pb dating of zircon crystals from four different mineralized porphyries reveals three significantly different ages of magmatic intrusion, i.e., ca. 372e382 Ma granodioritic porphyry and porphyritic granite, ca. 266 Ma quartz monzonitic porphyry, and ca. 216 Ma quartz dioritic porphyry. Ree Os dating of molybdenite from veinletdissemination ores in the granodioritic porphyry yields an age of mineralization of ca. 377 Ma, and Ar e Ar dating of K-feldspar from K-feldsparequartzechalcopyrite veins produces ages of ca. 269 and ca.198 Ma. The mineralization(and alteration) ages correspond broadly to the three episodes of magmatic intrusion, suggesting three overprinting porphyry mineralization events that are significantly separated in time. The first episode of porphyry intrusion and mineralization may be related to the magmatic arc being above a plate subduction zone, and the second was formed in a late-collisional environment during the closing of the Junggar Ocean, whereas the third episode of mineralization took place in the postcollisional stage. This case study suggests that in orogens where major porphyry deposits have been found in magmatic arc environments, the potential of discovering late- to post-collisional porphyry deposits cannot be neglected; conversely, in orogens where most porphyry deposits have late- to postcollisional ages, more attention should be paid to porphyries that were formed earlier in magmatic arc environments.
基金the joint financial support from the National Natural Science Foundation of China(No 41302263)a research project on “Quantitative models for prediction of strategic mineral resources in China”(201211022)by China Geological Survey
文摘The Wurinitu Mo deposit is one of the newly found molybdenum deposits in the southwestern part of the late Paleozoic–Mesozoic Erenhot–Dong-Ujimqin metallogenic belt (S-EDMB), Inner Mongolia, China. In the present study, the mineralization age of the Wurinitu deposit is constrained to 137.3 ± 1.3 to 131.9 ± 1.5 Ma based on a combination of the laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) zircon U–Pb dating of the mineralization related fine-grained monzonitic granite and the post-mineralization granite porphyry. The results of zircon Lu–Hf isotopes, combined with the geochemical characteristics of the granites in the S-EDMB, suggest that the Wurinitu Mo deposit was formed in an extensional environment in relation to the subduction of the Paleo-Pacific plate in late Mesozoic. The Wurinitu deposit shares similarities with the classical Climax-type porphyry molybdenum deposits in tectonic setting, mineral assemblages, and metal zonation.
基金supported by the National Key R&D Program of China(No.2016YFC0600404)the National Natural Science Foundation of China(Grant Nos.41673040 and 41611540339)the Project of National Land Resource Science and Technology of Anhui Province(2014-K-4)
文摘The newly discovered Paodaoling porphyry Au deposit from the Guichi region, Lower Yangtze River Metallogenic Belt (LYRB), contains 〉35 tons of Au at an average grade of -1.7 g/t. It is a porphyry 'Au-only' deposit, as revealed by current exploration in the depths, mostly above -400 m, which is quite uncommon among coeval porphyry mineralization along the LYRB. Additionally, there are also Cu-Au bearing porphyries and barren alkaline granitoids in the Paodaoling district. Zircon LA-ICP-MS U-Pb dating of the Cu-Au-bearing porphyries yield an age of 141-140 Ma, falling within the main magmatic stage of the LYRB, whereas the barren granites give an age of 125-120 Ma, coeval with the regional A- type granites. The Cu-Au-bearing porphyries are LILE-, LREE-enriched and HFSE-depleted, typical of arc magmatic affinities. The barren granites are HFSE-enriched, with lower LREE/HREE ratios and pronounced negative Eu anomalies. The Cu-Au-bearing porphyries in the Paodaoling district have high oxygen fugacities and high water content. Pyrite sulfur isotopes of the Paodaoling gold deposit indicate a magmatic-sedimentary mixed source for the ore-forming fluids. Based on the alteration and poly-metal zonation of the deepest exploration drill hole from the Paodaoling Au deposit, we propose that Cu ore bodies could lie at depth beneath the current Au ore bodies. The magmatism and associated Cu-Au mineralization of the Paodaoling district are likely to have formed in a subduction setting, during slab rollback of the paleo-Pacific plate.
基金supported by the State Key Fundamental Program (No. 2007CB411405)the Endanger Mine Project from China Geological Survey(No. 20799093)
文摘The Fenghuangshan skarn-type Cu deposit, Tongling Ore Cluster, Anhui Province, is an important component in the Middle-Lower Yangtze River ore-forming belt. To better understand magmatism and its relationship to mineralization, we investigated geochemical features, ore-forming fluids, and geochronology of the Xinwuli intrusion and the related Fenghuangshan Cu deposit. Lithogeochemical characteristics show that the Xinwuli quartz monzodiorite is formed by mixing magma derived from upper mantle alkaline basalt that has been contaminated by crust materials. C, H and O isotopes indicate that ore-forming fluids mainly come from the magma, with minor amounts of meteoric fluids involved at the late stage. S and Pb isotopic components indicate that ore-forming materials are derived from the mantle. Molybdenite Re-Os isotopic dating yields Re-Os model ages ranging from 139.1±2.4 Ma to 142.0±2.2 Ma, with an isochronal age of 141.1±1.4 Ma, which is consistent with sensitive, high-resolution ion microprobe (SHRIMP) zircon U-Pb ages of quartz monzodiorite and granodiorite in the mining area. Dating analysis yields ages from 136.0±2.0 Ma to 143.0±2.4 Ma for the quartz monzodiorite (a weighted average of 139.4±1.2 Ma) and ages from 136.7±2.0 Ma to 145.3±2.4 Ma for granodiorite (a weighted average of 141.0±1.1 Ma).
基金supported by the National Natural Science Foundation of China grant(40073013)
文摘This paper focused on the zircon sensitive high resolution ion micro-probeU-Pb geochronology of the tourmalinites from boron-bearing series of borate deposits in Eastern Liaoning. The zircons commonly have core-rim structures, most cores show oscillatory zoning in cathodoluminescence and plane polarized light images, suggesting a magmatic detrital origin. Ages of the magmatic detrital zircons from the hyalotonrmalite samples (N13) and (N14) are 2175 ± 5 Ma and 2171 ± 9 Ma, respectively. Moreover, metamorphic zircon from the sample (N13) shows an age of 1906 ± 4 Ma. Zircon core and rim from the hyalotourmalite sample (N02) record ages of 2171 ± 6 Ma and 1889± 62 Ma, which are explained as indicating the formation and metamorphic ages. Combined with the geological and geochemical studies, it can be concluded that the tourmalinites are formed during sedimentary exhalative mineralizations in the mid-Paleoproterozoic (-170 Ma) and underwent the metamorphism in the late-Paleoproterozoic (-1900 Ma). The tourmalinites are the products of submarine acid volcanism in the extension rifting phase of the Liaoji Paleoproterozoic Rift, the rockforming materials of which are derived from the mantle sources with recycling crustal contamination. The emergence of tourmalinites not only indicates the mid-Paleoproterozoic tectonic-magmatic processes, but also provides impetus, heat and material sources for the mineralization of borate deposits in Eastern Liaoning.
基金the Postdoctoral Science Foundation of China (No. 2018M630203)National Natural Science Foundation of China (Grant No. 41502090)
文摘Compared to other Mo provinces,few studies focused on the South China Mo Province(SCMP),especially for Early Cretaceous Mo mineralization.The Lufeng porphyry Mo deposit in the SCMP is characterized by disseminated and veinlet-type mineralization in granite porphyry,gneiss,and rhyolite.In this study,six molybdenite samples yield a Re–Os isochron age of 108.0±1.8 Ma,which is consistent with the zircon U–Pb age of the granite porphyry(108.4±0.8 Ma).The coincidence of magmatic and hydrothermal activities indicates that Mo mineralization was associated with the intrusion of granite porphyry during the late Early Cretaceous.A compilation of U–Pb and Re–Os chronological data suggests that an extensive and intensive Mo mineralization event occurred in the SCMP during the late Early Cretaceous.The marked difference in molybdenite Re contents between Cu-bearing(85–536 ppm)and Cu-barren(1.3–59 ppm)Mo deposits of the late Early Cretaceous indicates that the ore-forming materials were derived from strong crust–mantle interactions.Together with regional petrological and geochemical data,this study suggests that late Early Cretaceous Mo mineralization in the SCMP occurred in an extensional setting associated with the roll-back of the Paleo-Pacific slab.
基金financially supported by the National Key Research and Development Program of China (Grant No.2017YFC0601306)the National Natural Science Foundation of China (Grant No.41390444)+1 种基金the Program of the China Geological Survey(Grant No.DD20160344)supported by Team 707, Heilongjiang Bureau of Geological Exploration for Nonferrous Metals
文摘Epithermal gold deposits are typical precious metal deposits related to volcanic and subvolcanic magmatism.Due to the lack of direct geological and petrographic evidences,the origin of the ore-forming fluid is deduced from the spatial diagenesis-mineralization relationship,chronological data,physicochemical characteristics of mineral fluid inclusions,mineral or rock elements and isotopic geochemical characteristics.By objectively examining this scientific problem via a geological field survey and petrographic analysis of the Gaosongshan epithermal gold deposit,we recently discovered and verified the following points:(1) Pyrite-bearing spherical quartz aggregates (PSQA) occur in the rhyolitic porphyry;(2) the mineralization is structurally dominated by WNW- and ENE-trending systems and occurs mostly in hydrothermal breccias and pyrite-quartz veins,and the ore types are mainly hematite-crusted quartz,hydrothermal breccia,massive pyrite-quartz,etc.;(3) the alteration types consist of prevalent silicification,sericitization,propylitization and carbonation,with local adularization and illitization.The ore minerals are mainly pyrite,primary hematite,native gold,and electrum,with lesser amounts of chalcopyrite,magnetite,sphalerite,and galena,indicating a characteristic epithermal low-sulfidation deposit.The ore-forming fluid may have been primarily derived from magmatic fluid exsolved from a crystallizing rhyolitic porphyry magma.Further zircon U-Pb geochronology,fluid inclusion,physicochemical and isotopic geochemical analyses revealed that (1) rhyolitic porphyry magmatism occurred at 104.6 ± 1.0 Ma,whereas the crystallization of the PSQA occurred at 100.8 ± 2.1 Ma;(2) the hydrothermal fluid of the pre-ore stage was an exsolved CO2-bearing H2O-NaCl magmatic fluid that produced inclusions mainly composed of pure vapor (PV),vapor-rich (WV) and liquid-rich (WL) inclusions with a small number of melt-(M) and solid-bearing (S) inclusions;mineralization-stage quartz contains WL and rare PV,WV and pure liquid (PL) inclusions characterized by the H2O-NaCl system with low formation temperatures and low salinities;(3) the characteristics of hydrogen,oxygen,sulfur,and lead isotopes and those of rare earth elements (REEs) provide insight into the affinity between PSQA and orebodies resulting from juvenile crust or enriched mantle.Combined with previous research on the mineralogenetic epoch (99.32 ± 0.01 Ma),we further confirm that the mineralization of the deposit occurred in the late Early Cretaceous,which coincides with the extension of the continental margin induced by subduction of the Pacific Plate beneath the Eurasian Plate.The formation of the ore deposit was proceeded by a series of magmatic and hydrothermal events,including melting of enriched juvenile crust,upwelling,the eruption and emplacement of the rhyolitic magma,the exsolution and accumulation of magmatic hydrothermal fluid,decompression,the cooling and immiscibility/boiling of the fluid,and mixing of the magmatic fluid with meteoric water,in association with water-rock interaction.
基金Supported by Project of China Geological Survey(No.12120113098300)
文摘Quartz porphyry in Yuejinshan Fe-polymetallic deposit is one of the rock masses, which formed the granite belt relating to the late Yanshanian skarn-type Fe-polymetallic deposits in the eastern Heilongjiang, and is also closely related to the metallogenic space of the Fe-polymetallic deposits. Quartz porphyry has the zircon U-Pb concordia age of 125.0±1.1 Ma, overall showing high Si(SiO_2=74.48%--75.00%), rich alkaline(Na_2O+K_2O=7.93%--8.17%, K_2O/Na_2O=1.39--1.46), and poor Mg(MgO=0.27%--0.31%), with the A/CNK value being 0.95--0.99, having the characteristics of obvious enrichment of LREE and medium Eu negative anomaly(0.69--0.74), indicating that the rock belongs to quasi-aluminous high potassium calc-alkaline series and has the same characteristics as those of the I-type granite. The rock is also characterized by the enrichment of LILE and active incompatible elements, and depletion of HFSE such as Nb, Ta, P and Ti, with the Mg~# value being 32--37, indicating that the rock originated from partial melting of crustal materials. It can be concluded from the above characteristics or data and from the distribution of contemporary magmatic rocks in the area, that quartz porphyry in Yuejinshan Fe-polymetallic deposit was formed in a tectonic background of the subduction of the paleo-Pacific plate in late Yanshanian.