期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
利用多模态U形网络的CT图像前列腺分割 被引量:9
1
作者 凌彤 杨琬琪 杨明 《智能系统学报》 CSCD 北大核心 2018年第6期981-988,共8页
计算机断层扫描(computed tomography,CT)可应用于前列腺癌的检查诊断,但是它对软组织结构对比度不高,因此很难从中分割病变;而核磁共振成像(nuclear magnetic resonance imaging,MRI)具有较高的对比度,能为病变提供丰富的影像信息。为... 计算机断层扫描(computed tomography,CT)可应用于前列腺癌的检查诊断,但是它对软组织结构对比度不高,因此很难从中分割病变;而核磁共振成像(nuclear magnetic resonance imaging,MRI)具有较高的对比度,能为病变提供丰富的影像信息。为了提升CT图像的前列腺分割精度,本文提出一种新的基于深度学习的多模态U形网络图像分割模型MM-unet,充分运用MRI图像与CT图像间信息互补的特点。具体地,首先运用迁移学习思想分别训练MRI与CT图像的初始分割模型,然后通过设计一种新型的多模态损失函数MM-Loss,建立不同模态分割模型之间的联系,联合训练基于MRI与CT图像的MM-unet。为验证所提模型MM-unet的有效性,我们在某合作医院提供的Prostate数据集上进行了实验,实验结果表明,与U-net方法相比,MM-unet能够获得高出3个百分点Dice的CT图像分割精度。 展开更多
关键词 计算机断层扫描图像 核磁共振成像 深度学习 多模态u形网络 单模态u形网络 迁移学习 损失函数 前列腺分割
下载PDF
一种基于改进U形网络的眼底图像视网膜新生血管检测方法 被引量:1
2
作者 邹北骥 易博松 刘晴 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第4期19-25,共7页
糖尿病性视网膜病变(简称糖网病)是主要的致盲眼疾病之一,视网膜新生血管的出现是糖网病恶化的重要标志.为了更准确地检测出视网膜新生血管,本文提出了一种基于彩色眼底图的视网膜新生血管检测方法.首先通过一种改进的U形卷积神经网络... 糖尿病性视网膜病变(简称糖网病)是主要的致盲眼疾病之一,视网膜新生血管的出现是糖网病恶化的重要标志.为了更准确地检测出视网膜新生血管,本文提出了一种基于彩色眼底图的视网膜新生血管检测方法.首先通过一种改进的U形卷积神经网络对血管进行分割;然后利用滑动窗口提取特定区域内血管的形态特征,通过支持向量机将窗口内的血管分为普通血管和新生血管.使用来自MESSIDOR数据集和Kaggle数据集的含有视网膜新生血管的彩色眼底图对实验进行训练和测试,结果表明该方法对视网膜新生血管检测的准确率为95.96%;该方法在糖网病计算机辅助诊断方面有潜在的应用前景. 展开更多
关键词 视网膜新生血管检测 血管分割 u形网络 深度学习
下载PDF
U形网络的脊椎分割改进方法研究 被引量:1
3
作者 梁淑芬 杨芳臣 秦传波 《现代电子技术》 北大核心 2020年第21期31-34,38,共5页
针对当前U-Net网络模型以及相关卷积网络在脊椎分割中分割边缘精度低,对目标的识别率低等问题,提出几种改进的语义分割网络模型。考虑到脊椎MRI图像中目标区域连续且集中,并存在复数微小区域,边缘特征丰富,运用新型卷积块替换标准卷积结... 针对当前U-Net网络模型以及相关卷积网络在脊椎分割中分割边缘精度低,对目标的识别率低等问题,提出几种改进的语义分割网络模型。考虑到脊椎MRI图像中目标区域连续且集中,并存在复数微小区域,边缘特征丰富,运用新型卷积块替换标准卷积结构,利用多路径思想,融入复数编解码器结构,降低运算复杂度,提升边缘特征提取力度,应对不同的特征提取问题。模型在SpineWeb的High anisotropy MRIs of the lower back数据集2000张脊椎图像上做实验,运用训练好的模型对同组脊椎MRI图像作预测。实验结果显示,网络模型的预测结果与提供的真值标签在Dice系数以及Precision系数等几项评价指标上分别达到0.891和0.894。 展开更多
关键词 脊椎分割 网络模型 u形网络 结构替换 特征提取 图像预测
下载PDF
基于心脏磁共振电影图像的压缩激励残差U形网络左心肌分割 被引量:1
4
作者 王慧 王甜甜 王丽嘉 《波谱学杂志》 CAS 北大核心 2023年第4期435-447,共13页
左心肌分割对心脏疾病诊疗具有重要意义.但左心肌内部毗邻乳头肌、小梁,外部与周围组织灰度相近,是分割难点.本文首先对心脏磁共振电影图像数据进行感兴趣区域提取等预处理;其次,搭建融合了压缩激励模块和残差模块的U形网络(SERU-net)... 左心肌分割对心脏疾病诊疗具有重要意义.但左心肌内部毗邻乳头肌、小梁,外部与周围组织灰度相近,是分割难点.本文首先对心脏磁共振电影图像数据进行感兴趣区域提取等预处理;其次,搭建融合了压缩激励模块和残差模块的U形网络(SERU-net)分割左心肌;最后,利用75例数据训练SERU-net网络,对18例数据进行预测.基于本文方法的分割结果相对于金标准的Dice系数与豪斯多夫距离均值分别是0.902、2.697 mm;利用本文方法分割得到的舒张末期、收缩末期左心室心肌质量与金标准的相关系数和偏差均值分别是0.995、0.993和3.784 g、2.338 g.结果表明,本文方法与金标准匹配程度较高,有望辅助诊断心脏疾病. 展开更多
关键词 心脏磁共振电影图像 左心肌分割 压缩激励残差u形网络 深度学习
下载PDF
基于U形多层感知机网络的地震波初至拾取与反演
5
作者 孙明皓 余瀚 +1 位作者 陈雨青 陆恺 《计算机应用》 CSCD 北大核心 2024年第7期2301-2309,共9页
针对传统勘探地震波初至拾取工作量大、抗噪性差和精度低所导致的低质量速度反演影响生产安全的问题,提出一种基于U形多层感知机(U-MLP)网络的地震波初至拾取与反演方法。首先,为解决传统U形网络(U-Net)中的交叉熵损失函数在数据类别不... 针对传统勘探地震波初至拾取工作量大、抗噪性差和精度低所导致的低质量速度反演影响生产安全的问题,提出一种基于U形多层感知机(U-MLP)网络的地震波初至拾取与反演方法。首先,为解决传统U形网络(U-Net)中的交叉熵损失函数在数据类别不平衡时导致的性能变差问题,设计一种基于加权交叉熵Lovász归一化指数(WLS)的损失函数;然后,在特征融合阶段引入残差连接,缩小低级特征与高级特征间的差距,还原更多细节信息;最后,为使U-MLP网络更好学习图像局部特征,为高级语义引入标记化的多层感知机(MLP)模块,此模块降低了参数量和计算复杂度。实验结果表明,与U-Net相比,U-MLP网络在训练中收敛性更强,初至拾取最大误差降低了20%以上,交并比(IoU)值提升了约2%。可见,U-MLP网络在提取勘探地震波初至时不仅提高了拾取精度,而且拾取的初至在仿真数据和实际数据中的速度分布反演均达到了理想效果,具有更好的性能且适应性更强。 展开更多
关键词 u形网络 多层感知机 初至拾取 反演 成像
下载PDF
基于卷积神经网络的颅内囊状动脉瘤半自动分割模型的构建与验证研究
6
作者 耿介文 王思敏 +2 位作者 胡鹏 何川 张鸿祺 《中国脑血管病杂志》 CAS CSCD 北大核心 2024年第9期577-586,共10页
目的基于卷积神经网络创建一种半自动的颅内囊状动脉瘤分割技术。方法回顾性连续纳入2017年7月至2020年7月“中国颅内动脉瘤计划”数据库中首都医科大学宣武医院的单中心数据,所有数据在分析前均进行了匿名处理。收集所有患者的基线资料... 目的基于卷积神经网络创建一种半自动的颅内囊状动脉瘤分割技术。方法回顾性连续纳入2017年7月至2020年7月“中国颅内动脉瘤计划”数据库中首都医科大学宣武医院的单中心数据,所有数据在分析前均进行了匿名处理。收集所有患者的基线资料,包括性别、年龄(≥60岁和<60岁)和DSA机型、DSA序列数及动脉瘤信息,包括动脉瘤个数、直径(≥5 mm和<5 mm)、颈宽(宽颈、窄颈)及位置(分叉部、侧壁)。根据8∶1∶1的比例将数据通过随机数字表法随机分为训练集、测试集和验证集。3个数据集患者的DSA三维断层数据均采用三维旋转DSA模式在造影机完成,并由3位有经验的神经外科医师对DSA三维断层数据显示的动脉瘤进行标注,并最终生成动脉瘤的标准标签。动脉瘤分割模型包括训练阶段和分割阶段。训练阶段,使用训练集的DSA三维断层图像数据与动脉瘤的分割标签以及通过Marching Cubes算法提取的血管边缘信息,对模型进行端到端的训练,在测试集上监控模型的分割指标,保留分割指标最高的模型。分割阶段,医师在验证集的动脉瘤DSA三维断层图像上选择一个动脉瘤内部的点,截取感兴趣体积(VOI),输入训练好的血管与动脉瘤分割最优模型,得到动脉瘤的分割结果,将分割的VOI定位回原始DSA三维断层图像以获得最终的动脉瘤轮廓。将分割网络模型的分割结果与人工获取的标准标签进行比较,以计算Dice相似系数(DSC)。对验证集数据按照动脉瘤直径、颈宽、位置进行分层,以比较不同亚组间的DSC。计算动脉瘤分割掩膜的长、宽和高的边界框,将其中的最大值作为动脉瘤的最大直径,与标准标签中的最大直径进行对比。在验证集中统计并比较颅内动脉瘤标准标签人工获取时间与分割网络模型获取时间(从定位动脉瘤到获取满意的动脉瘤颈分割时间)。结果最终纳入了756例患者的969个DSA序列显示的1094个动脉瘤的三维断层数据。其中,训练集纳入604例患者共783个DSA序列的877个动脉瘤,测试集纳入77例患者共100个DSA序列的117个动脉瘤,验证集纳入75例患者共86个DSA序列的100个动脉瘤。(1)各数据集基线比较结果显示,动脉瘤直径(P=0.003)、动脉瘤位置(P=0.003)的各数据集间的差异有统计学意义。余基线资料各数据集间差异无统计学意义(均P>0.05)。(2)验证集中动脉瘤分割的平均DSC为0.868±0.078。直径≥5 mm的动脉瘤分割的平均DSC高于直径<5 mm的动脉瘤(0.891±0.041比0.855±0.088,P=0.038)。窄颈、宽颈、分叉、侧壁动脉瘤分割的DSC值分别为0.882±0.065、0.859±0.085、0.876±0.072及0.863±0.080,组间差异均无统计学意义(均P>0.05)。(3)动脉瘤分割模型在验证集所得到的掩膜最大直径与人工分割获得的标准标签的最大直径有较好的一致性[(5.78±3.18)mm比(5.37±2.92)mm,r=0.97]。在验证集中,人工分割与应用神经网络分割动脉瘤的平均时长分别为2.5 min、34 s。结论本研究基于卷积神经网络创建半自动的颅内囊状动脉瘤分割技术可较为准确分割动脉瘤,该模型有助于动脉瘤形态学分析。 展开更多
关键词 颅内囊性动脉瘤 分割模型 神经网络 u形网络结构 Dice相似系数
下载PDF
基于改进U-net的肺癌识别方法 被引量:7
7
作者 张永梅 彭炯 +1 位作者 马健喆 胡蕾 《计算机工程与设计》 北大核心 2021年第1期256-262,共7页
目前基于深度学习的肺癌辅助诊断方法存在无法准确定位病灶的缺陷。针对该问题,在现有U-net网络结构的基础上提出一种分两步走的基于改进U-net的肺癌识别方法。利用U-net获得病灶精确位置,通过CNN分类网络对病灶进行诊断,得到原始CT图... 目前基于深度学习的肺癌辅助诊断方法存在无法准确定位病灶的缺陷。针对该问题,在现有U-net网络结构的基础上提出一种分两步走的基于改进U-net的肺癌识别方法。利用U-net获得病灶精确位置,通过CNN分类网络对病灶进行诊断,得到原始CT图像的检测结果。实验结果表明,该方法可以对肺部病灶进行较为精确的定位,分割效果的DSC相似度指数超过80%,对肺癌病灶进行分类诊断的准确率达到90.7%。 展开更多
关键词 肺结节 计算机断层扫描图像 u形网络 肺癌识别 CNN
下载PDF
基于改进U-Net的人脑黑质致密部分割 被引量:2
8
作者 曹加旺 田维维 +2 位作者 刘学玲 李郁欣 冯瑞 《计算机工程》 CAS CSCD 北大核心 2022年第11期14-21,29,共9页
人脑黑质致密部分割能够为帕金森病的诊断提供一定依据。黑质致密部在人脑核磁共振成像中像素占比低、类间差异小,为提高计算机辅助诊断系统对人脑黑质致密部的分割精度,提出一种基于改进U形神经网络(U-Net)的人脑黑质致密部分割方法。... 人脑黑质致密部分割能够为帕金森病的诊断提供一定依据。黑质致密部在人脑核磁共振成像中像素占比低、类间差异小,为提高计算机辅助诊断系统对人脑黑质致密部的分割精度,提出一种基于改进U形神经网络(U-Net)的人脑黑质致密部分割方法。为了提取更多有效的多尺度图像语义特征,结合U-Net的跨连接结构并采用多头注意力机制,同时融合基于Transformer编码器的高维语义编码模块以提取高维语义特征,避免浅层噪声对特征造成的影响。建立多任务模型并设计基于二维高斯核权重掩膜的损失函数,解决神经网络分割模型因多次下采样造成的不连续分割误差问题。构建包括140个帕金森病患者以及48个健康对照者的高精度核磁共振脑成像数据集进行实验,结果表明,相较常用的医疗影像分割方法 R2U-Net、HANet等,该方法的多任务分割效果取得明显提升,戴斯相关系数和AUC指标分别达到0.869 1和0.943 9,消融实验结果也验证了改进编码器和改进损失这2个模块的有效性。 展开更多
关键词 图像分割 帕金森病 黑质致密部 u神经网络 Transformer模块 多任务学习
下载PDF
基于多尺度特征提取与融合的单幅图像去雾算法
9
作者 李金函 魏伟波 王博 《图像与信号处理》 2024年第2期117-129,共13页
为解决随着CNN网络层数加深而导致的学习成本过高或过拟合问题,提出了一种基于多尺度特征提取与融合的单幅图像去雾算法。该算法结合U-Net思想,对输入图像进行物理分割和下采样得到多个尺度的特征图,采用残差连接的方式进行多维度融合,... 为解决随着CNN网络层数加深而导致的学习成本过高或过拟合问题,提出了一种基于多尺度特征提取与融合的单幅图像去雾算法。该算法结合U-Net思想,对输入图像进行物理分割和下采样得到多个尺度的特征图,采用残差连接的方式进行多维度融合,可以更好的适配大尺度数据集。同时,在网络中加入了深度监督模块,引入额外的监督信号有助于梯度传播,加快收敛速度,保证了训练的稳定性,这种多任务的学习形式提高了网络对不同输入的适应性,可以增强去雾效果。此外,使用自带多维度天气系统渲染的3D游戏引擎,自建了一份大尺度全高清数据集,模型训练的鲁棒性和泛化能力得到显著提升。实验结果表明,所提算法在训练速度和模型大小控制上具有一定优势,在主观评价上,远景去雾效果明显,峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)和结构相似性(Structure Similarity, SSIM)两个客观评价指标分别为26.75 dB和0.907,相较于对比算法中性能第二的模型分别提高了3.5和5.9个百分点,加入自建数据集进行组合训练后进一步提升了模型的去雾性能。 展开更多
关键词 单幅图像去雾 多尺度特征融合 u形网络 深度监督 自建数据集
下载PDF
基于深度学习的路面缺陷检测方法研究 被引量:1
10
作者 韩东耀 《中国新技术新产品》 2024年第8期62-64,共3页
路面缺陷会给公路监管和路面养护带来严重影响,本文针对目前路面缺陷图像采集方法成本高、效率低的问题,提出一种基于深度学习的路面缺陷检测方法。该方法包括目标检测和图像分割子系统,其中,目标检测使用YOLOv5模型来提升路面缺陷位置... 路面缺陷会给公路监管和路面养护带来严重影响,本文针对目前路面缺陷图像采集方法成本高、效率低的问题,提出一种基于深度学习的路面缺陷检测方法。该方法包括目标检测和图像分割子系统,其中,目标检测使用YOLOv5模型来提升路面缺陷位置识别精准率;图形分割使用“U”形多尺度扩张卷积网络(U-Multiscale Dilated Network,U-MDN)来增强路面缺陷深度特征提取。使用目标检测数据集和图像分割数据集进行试验,其中YOLOv5模型精度为92%;比较U-Net模型和U-MDM模型,U-MDN模型的Precision、Recall和F1-score指标综合表现最优,充分证明了该方法对路面缺陷检测具有有效性。 展开更多
关键词 深度学习 路面缺陷检测 目标检测 图像分割 YOLOv5模型 u多尺度扩张卷积网络
下载PDF
基于Transformer的核磁共振肿瘤图像分割研究
11
作者 吕嫄 《邵阳学院学报(自然科学版)》 2023年第4期17-24,共8页
为了提高医务人员对于脑肿瘤核磁共振成像的诊断效率和准确率,提出一种基于Transformer的U形图像分割网络,使用纯Transformer架构对输入图像进行特征编码与解码,并通过跳转连接融合多尺度特征修复目标细节。此外,还在特征融合的地方增... 为了提高医务人员对于脑肿瘤核磁共振成像的诊断效率和准确率,提出一种基于Transformer的U形图像分割网络,使用纯Transformer架构对输入图像进行特征编码与解码,并通过跳转连接融合多尺度特征修复目标细节。此外,还在特征融合的地方增加了跳转注意力操作,增强模型的鲁棒性。为了验证此方法的有效性,在公共的脑肿瘤分割数据集BraTS2021上进行了多次实验。所提模型对ET、TC和WT区域的分割Dice得分分别达到83.51%、87.66%和91.39%,且参数量和浮点运算次数较低。实验结果表明,所提网络结构在脑肿瘤核磁共振成像上具有较强的分割性能。 展开更多
关键词 卷积神经网络 TRANSFORMER 跳转连接 u分割网络 脑肿瘤
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部